Documents et appareils électroniques interdits.

Exercice 1 Enoncer le théorème de décomposition de Cholesky.

Exercice 2 (Résolution de systèmes linéaires) Soit $n \in \mathbb{N}^*$, $n \geq 2$, $a \in \mathbb{R}$ et un entier p satisfaisant 1 . On considère la matrice <math>M de taille $n \times n$ définie par

$$M_{i,i} = 1, i = 1, \dots, n, M_{i+1,i} = 1, i = 1, \dots, n-1, M_{1,p} = 1/2,$$

et $M_{i,j} = 0$, sinon.

1. On prend n = 3, p = 2 puis p = 3. Donner la décomposition LU pour ces deux cas.

2. De manière générale, justifier que M admet une décomposition LU. Calculer le nombre total de coefficients non nuls de L et de U en fonction de n et p. Pour quelle valeur de p ce nombre est-il minimal? Pour quelle valeur est-il maximal?

Exercice 3 Soit $A \in \mathcal{M}_3(\mathbb{R})$ la matrice définie par A = Id - E - F, avec

$$E = -\left(\begin{array}{ccc} 0 & 2 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) \quad \text{et} \quad F = -\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{array}\right)$$

1. Montrer que la matrice A est inversible.

2. Soit $0 < \omega < 2$. Montrer que la matrice $(\frac{1}{\omega}Id - E)$ est inversible si et seulement si $\omega \neq \frac{\sqrt{2}}{2}$.

3. On suppose que $0<\omega<2$ et $\omega\neq\frac{\sqrt{2}}{2}$. On désire résoudre le système Ax=b grâce à la méthode itérative suivante :

$$\left(\frac{1}{\omega}Id - E\right)x_{k+1} = \left(F + \frac{1-\omega}{\omega}Id\right)x_k + b.$$

On pose $B = \mathcal{L}_{\omega} = \left(\frac{1}{\omega}Id - E\right)^{-1} \left(F + \frac{1-\omega}{\omega}Id\right)$. Calculer, en fonction de ω , les valeurs propres de \mathcal{L}_{ω} , de même que son rayon spectral.

4. Pour quelles valeurs de ω la méthode est-elle convergente?

5. Déterminer $\omega_0 \in]0,2[$ tel que

$$\rho(\mathcal{L}_{\omega_0}) = \min\{\rho(\mathcal{L}_{\omega}), 0 < \omega < 2 \quad et \quad \omega \neq \frac{\sqrt{2}}{2}\}.$$

En quoi la connaissance de ω_0 peut-être utile?