
www.cea.fr
www.cea.fr

MPC: AN HPC OPEN

SOURCE ECOSYSTEM

NOVEMBER 2016

Marc PERACHE

CEA, DAM, DIF, F-91297 Arpajon, France

| PAGE 1 CEA-BSC Meeting | July 12th, 2016 |

PAGE 2

Context

Activity overview
Runtime system and software stack for HPC

Available software

• MPC framework

• MALP (performance analysis tool)

• JCHRONOSS (job scheduler for test suite on production machines)

• Wi4MPI (MPI abstraction)

Website for team work: http://hpcframework.com

Paratools is our main partner on all these activities

MPC framework
Unified parallel runtime for clusters of NUMA machines

• Idea: one process per node, compute units exploited by user-level threads

Integration with other HPC components

• Parallel memory allocator, compilers, debuggers, topology tool…

Research and production ready MPI and OpenMP implementation

Homepage: http://mpc.hpcframework.com

CeCILL-C license

http://hpcframework.com/
http://hpcframework.com/
http://mpc.hpcframework.com/
http://mpc.hpcframework.com/

PAGE 3

MPC Execution Model

MPI/OpenMP

integration
Automatic MPI task placement

on the node

Automatic OpenMP thread

placement

• Topology inheritance

Example
Node with 2 CPUs

2 cores per CPU

2 MPI tasks per node

Default: 2 OpenMP threads

per team

MPC - UNIFIED USER-LEVEL THREAD

SCHEDULER

PAGE 4

CEA-BSC Meeting | July 12th, 2016 |

PAGE 5

User-Level Thread Scheduler

Why user level threads ?
Easier development
• compare to kernel development

Optimizations:
• Keep only useful HPC functionalities
• Less or no system calls (no system calls if no signal support)

Portable:
• OS independent

Drawbacks:
• Hard to debug: need specific debugger support (collaboration with Allinea for user-level thread
support)
• Architecture dependencies:

Optimized ASM context/switch, spinlocks, …
Topology detection and binding (easier thanks to HWLOC)

PAGE 6

MPC User-Level Thread Scheduler

MPC User-Level thread scheduler features
MxN thread scheduler
• M user-level threads > N kernel threads

Optimizations
• ASM context switches
• Link with MPC memory allocator to ensure data locality

Topological binding:
• Static a priori distribution (MPI scatter/OpenMP compact)
• On demand migration (link with memory allocator)

MPI optimized scheduler
• Internal dedicated task engine for message progression

Optimized busy waiting policy
• Use the thread scheduler to dynamically adapt busy waiting policy according to node workload
• Busy waiting delegation to thread scheduler (e.g. “smart” mwait/futex)

Modular approach in order to evaluate new scheduling policies

No preemption

MPC - MPI IMPLEMENTATION

PAGE 7

CEA-BSC Meeting | July 12th, 2016 |

PAGE 8

MPC – MPI: Purpose and Supported Features

Goals
Smooth integration with multithreaded model

Low memory footprint

Deal with unbalanced workload

Modular architecture

Supported Features
Fully MPI 1.3 compliant (3.1 soon)

Handle up to MPI_THREAD_MULTIPLE level (max level)

MPI I/O

Non-blocking collectives

Neighborhood collectives

Inter-node communications
TCP, InfiniBand & Portals4

Tested up to 80,000 cores with various HPC codes

PAGE 9

MPC-MPI Process-Based Execution Model

Application with 4 MPI tasks in 4 processes

PAGE 10

MPC-MPI Thread-Based Execution Model

Application with 4 MPI tasks in 1 process

PAGE 11

User-Level Thread Scheduler: MPI

Thread-based MPI
Process virtualization
• Each MPI process is a user-level thread

Benefits
No busy waiting:
• Efficient oversubscribing (more MPI processes than cores)
• Share resources with other programming models

Efficient message progression at node level:
• Use “Idle” cycle to perform message progression
• Collaborative Polling: shared message progression engine for all MPI Processes within a node

Drawbacks
Not compatible with classical MPI usage
• Issue with global variables

 Solution with Automatic Privatization

PAGE 12

Member of the MPI-Forum

PAGE 13

MPI EXPERIMENT

Architecture: Intel KNL

Application: LULESH MPI
Evaluation of multiple MPI implementations (OpenMPI, IntelMPI, MPC with either GNU

or Intel compiler)

Early 15 nodes 1,000 processes EDR results MPC 46.14s vs OpenMPI 60.23s

0

100

200

300

400

500

600

700

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
)

LULESH 30x30x30 - 27 MPI processes

MPC - OPENMP IMPLEMENTATION

PAGE 14

CEA-BSC Meeting | July 12th, 2016 |

PAGE 15

RUNTIME STACKING: OPENMP LAYER

Impact of runtime stacking on OpenMP Layer
Strong performance in fine-grain and coarse-grain approaches

• Fine-grain

Optimization of launching/stopping a parallel region

Optimization of performing loop scheduling

• Coarse-grain

Optimization of synchronization constructs (barrier, single, nowait…)

Thread placement according to available cores (job manager + MPI runtime)

• Oversubscribing need to avoid busy waiting

OpenMP runtime design and implementation
Goal: design of OpenMP runtime fully integrated into MPI runtime dealing with Granularity and

Placement

Implementation in MPC unified with optimized MPI layer

PAGE 16

MPC Execution Model: Full MPI

4 MPI tasks in one process

PAGE 17

MPC Hybrid Execution Model: MPI+OpenMP (1)

1 MPI task + 4 OpenMP threads in one process

PAGE 18

MPC Hybrid Execution Model: MPI+OpenMP (2)

2 MPI tasks + 4 OpenMP threads in one process

PAGE 19

User-Level Thread Scheduler: OpenMP

OpenMP threads are User-Level thread
Smart binding thanks to information sharing with MPI runtime through thread scheduler

Benefits
Avoid busy waiting in multi-programming model context
• Useful for fast thread wakeup/sleep (entering/leaving parallel regions, …)

Data locality (link scheduler memory allocator)

Drawbacks
Unable to use standard TLS for #pragma threadprivate

 Solution with extended-TLS

PAGE 20

OPENMP EXPERIMENT

Architecture: dual-socket 16-core Haswell

Application: LULESH OpenMP compiled with Intel 16
Evaluation of Intel OpenMP runtime vs. MPC OpenMP runtime (same compiler)

0

50

100

150

200

250

1 2 4 8 16 20 24 32

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
)

Number of OpenMP Threads

LULESH 50x50x50

INTEL 16.0

MPC 3.1

MPC – EXTENDED TLS AND

AUTOMATIC PRIVATIZATION

PAGE 21

CEA-BSC Meeting | July 12th, 2016 |

PAGE 22

Extended TLS library: ExTLS

Use threads (e.g. MPI processes) instead of OS processes
Convert standard OS process to MPC thread
Encapsulate OS process within threads

Difficulties
How to handle global variables
Unable to use standard TLS for #pragma threadprivate
Deal with non-thread safe libraries
• User libraries: HDF5, …
• System libraries: getopt, …
• Compiler libraries: libgfortran, …

Automatic privatization thanks to compiler support

Provide patched version if not compatible yet with automatic
privatization

Provide non-thread safe system libraries

PAGE 23

Extended TLS Application: Automatic Privatization

Solution: Automatic privatization
Automatically convert any MPI code for thread-based MPI compliance

Duplicate each global variable

Design & Implementation
Completely transparent to the user

When parsing or creating a new global variable: flag it as MPI thread-local

• #pragma threadprivate : flag it as OpenMP thread-local

Generate runtime calls to access such variables (extension of TLS mechanism)

• Linker optimization for reduce overhead of global variable access

Compiler support
New option to GCC C/C++/Fortran compiler (-fmpc-privatize)

• Patched GCC provided with MPC (4.8.5, on going on GCC 4.9.x and 5.x)
ICC support automatic privatization with same flag (-fmpc-privatize)

• ICC 15.0.2 and later

On-going work for PGI compiler support

PAGE 24

Official Support of MPC in Intel Compiler Man Page

Official support of MPC since Intel Compiler v15.02
Extracted from the icc/icpc/ifort man page

> man icc
...
Feature: Privatization of static data for the MPC unified parallel runtime Requirement:
Appropriate elements of the MultiProcessor Computing (MPC) framework For more information,
see http://mpc.sourceforge.net/
...
-fmpc-privatize (L*X only) / -fno-mpc-privatize (L*X only)
Enables or disables privatization of all static data for the MultiProcessor Computing
environment (MPC) unified parallel runtime.
Architecture Restriction: Only available on Intel(R) 64 architecture
Arguments: None
Default: -fno-mpc-privatize
The privatization of all static data for the MPC unified parallel runtime is disabled.
Description:
This option enables or disables privatization of all static data for the MultiProcessor
Computing environment (MPC) unified parallel runtime.
Option -fmpc-privatize causes calls to extended thread-local-storage (TLS) resolution, run-
time routines that are not supported on standard Linux* OS distributions.
This option requires installation of another product. For more information, see Feature
Requirements.

http://mpc.sourceforge.net/
http://mpc.sourceforge.net/

CEA-BSC Meeting | July 12th, 2016 |

25

Ecosystem Survey

25

CEA, DAM, DIF, F-91297 Arpajon, France.

LLNL Meeting | June 15th, 2015 |

26

MALP: MULTI-APPLICATION ON-LINE

PROFILING

26

CEA, DAM, DIF, F-91297 Arpajon, France.

PROFILING APPLICATIONS AT SCALE

Approaches
In-place

• Analysis uses applications cores

• Simple analysis only

Traced based

• Rely on file system

• Post mortem analysis

On-line

• Combine the two previous approaches

• In-place analysis to reduce the amount of

data on file system

• Dedicated resources

Our proposition: the MALP tool
On-line analysis

Use high performance networks

Handle simultaneously multiple applications

Trace based

MULTI-APPLICATION ONLINE PROFILING

• Engine
Use dedicated cores

• Trade-off performances vs analysis cost

• Limited impact on application execution

Use high speed interconnect

• Analysis
Based on blackboards

Analysis engine

• Multiple analysis on events

• Parallel analysis

Events:

• MPI

• POSIX

• Function calls

MULTI-APPLICATION ONLINE PROFILING

Multiple application feature
Profile multiple application at scale

Share analysis resources

ANALYSIS EXAMPLE

EulerMHD profil

8192 cores on Curie

PAGE 31

Multi-Application On-Line Profiling

What is MALP ?
MALP stands for Multi-Application on-Line Profiling it is an online performance tracing tool aiming at

overcoming common file-system limitations by relying on runtime coupling between running

applications.

What can I do with MALP ?

With MALP you can generate compact views of your parallel application behavior. Thanks to its

web interface and interactive visualizations, you are able to better understand its MPI behavior at

scale thanks to the online data-management approach.

Roadmap

Compatibility with Allinea MAP/Performance report plugins

New plugins: memory allocation, OpenMP, …

Direct access to the underlying network (remove MPI dependency)

Status

OpenSource Cecill-C

 http://malp.hpcframework.com/

http://malp.hpcframework.com/
http://malp.hpcframework.com/
http://malp.hpcframework.com/

LLNL Meeting | June 15th, 2015 |

32

JCHONOSS: Job CHecker under

Resources cONstraints

with Optimized and Scalable Scheduler

32

CEA, DAM, DIF, F-91297 Arpajon, France.

PAGE 33

Validation in HPC context

Continuous integration
Mandatory to validate huge codes or libraries (MPC)
Require big enough machines (high speed networks, NUMA topologies, …)

Validation on production machines
Heavy loaded machines
Need to use batch manager
How to deal with short tests
• Time spent waiting for an allocation >> test execution time
Tests properties:
• Variable execution times
• Variable number of nodes/cores

Our approach JCHRONOSS
Job scheduler
Interfaces with:
• Batch manager (SLURM, …)
• GUIs thanks to JUNIT format
• XML files to describe the tests
Integrated checkpoint/restart

JCHRONOSS Approach

Master/Worker
Master process

• Distribute tests sets

• Compute scheduling according to test

execution time (if available)

• Call first step allocation (e.g. salloc)

Worker processes

• Execute tests (e.g. srun)

• Gather results

• Generate intermediate JUNIT files

PAGE 34

JCHRONOSS Embedded Viewer

Webview
Visualize intermediate results during test-

suite execution

Portable

• HTML/XML files

• Only require a web browser

PAGE 35

PAGE 36

JCHRONOSS

What’s JCHRONOSS
JCHRONOSS is a tool helping you to maintain a high level of quality in your project by making your
validation step easier and faster. Initially suited for High Performance Computing test suites,
JCHRONOSS is able to distribute thousands of parallel jobs in parallel environments and over large
supercomputers.
Designed with a high level of abstraction, JCHRONOSS can work with any kind of batch managers
or architectures. Some extra features embedded with JCHRONOSS like scheduling visualization
and standalone result reviewing, makes JCHRONOSS a complete and powerful tool for most of
validation suites.

Roadmap

Better integration with Jenkins

Real time interactions with test suite

Status

OpenSource Cecill-C

http://jchronoss.hpcframework.com/

http://malp.hpcframework.com/
http://malp.hpcframework.com/
http://malp.hpcframework.com/

LLNL Meeting | June 15th, 2015 |

37

Wi4MPI: Wrapper interface For MPI

37

CEA, DAM, DIF, F-91297 Arpajon, France.

WI4MPI: CONTEXT

The MPI ABI is not standardized
Many MPI implementations:

• MPICH (IntelMPI, MVAPICH, …)

• OpenMPI (BullxMPI, …)

• Not binary compatible

Within the same implementation no binary compatibility

• OpenMPI 1.8 ABI != OpenMPI 2.0 ABI

Need to recompile the whole software stack to change the MPI implementation or

version

Wi4MPI allows to avoid recompilation phase
Allow to abstract the underlying MPI implementation

• Wi4MPI is now the MPI implementation at application level

Dynamically change the MPI implementation

Ease debugging phases

Ease MPI implementation performances evaluation

PAGE 38

STANDARD MPI APPROACH

MPI Application

C/C++/Fortran

MPI Call

MPI Library

MPI API

IB TCP SHM PTL

MPI_Send(buf, count, datatype, dest, tag, comm)

PAGE 39

STANDARD MPI APPROACH

MPI Application

C/C++/Fortran

MPI Call

MPI Library

MPI API

IB TCP SHM PTL

MPI_Send(buf, count, datatype, dest, tag, comm)

Implementation dependent

PAGE 40

STANDARD MPI APPROACH

MPI Application

C/C++/Fortran

MPI Call

MPI Library

MPI API

IB TCP SHM PTL

MPI_Send(buf, count, datatype, dest, tag, comm)

Implementation dependent

PAGE 41

Example: MPI_COMM_WORLD

MPICH implementation:

• C type: int

• Value: 0x44000000

OpenMPI implementation:

• C type: ompi_communicator_t *

• Value: &ompi_mpi_comm_world

WI4MPI APPROACH

MPI Application

C/C++/Fortran

MPI Call

MPI Library

MPI API

IB TCP SHM PTL

MPI_Send(buf, count, datatype, dest, tag, comm)

MPI_Send(buf, count, datatype, dest, tag, comm)

Wi4MPI

PAGE 42

WI4MPI: REDMPI-BLUEMPI TRANSLATION

MPI Application

C/C++/Fortran

MPI Call

MPI Library

MPI API

IB TCP SHM PTL

MPI_Send(buf, count, datatype, dest, tag, comm)

MPI_Send(buf, count, datatype, dest, tag, comm)

Wi4MPI

Convert implementation dependent objects

PAGE 43

PAGE 44

WI4MPI: STATUS

Features
With Wi4MPI, the software stack is MPI-independent
Avoid software recompilation to change the MPI implementation
Choose MPI implementation at execution time (OpenMPI, IntelMPI, …)
C/C++ and Fortran support
MPI 1.3 compliant + MPI-IO
Validated conversions:

• OpenMPI 1.8.8 IntelMPI 5.1.3.181

• IntelMPI 5.1.3.181 OpenMPI 1.8.8

Validated on real production codes

Roadmap
Process mode MPC support (OpenMPI MPC, IntelMPI MPC) Q4 16
In production on CEA clusters
Full MPI 3.1 support Q4 16

Status
OpenSource, Cecill-C License (fully LGPL compatible)
https://github.com/cea-hpc/wi4mpi

https://github.com/cea-hpc/wi4mpi
https://github.com/cea-hpc/wi4mpi
https://github.com/cea-hpc/wi4mpi
https://github.com/cea-hpc/wi4mpi

CEA-BSC Meeting | July 12th, 2016 |

45

Conclusion & Future Work

45

CEA, DAM, DIF, F-91297 Arpajon, France.

PAGE 46

Conclusion

Programming models

Provide widely spread standards: MPI 1.3+ (almost MPI 3.1), OpenMP 3.1, Pthread, TBB

Available at http://mpc.hpcframework.com (version 3.1)

Optimized for manycore and NUMA architectures

Runtime optimization

Provide unified runtime for MPI + X applications

New mechanism to mix thread-based programming models: Extended TLS
• Compiler option to duplicate global variables: -fmpc-privatize (gcc, icc)

Support

Architecture: x86, x86_64, MIC
Network: TCP, Infiniband and Portals4 with multi-rail
Resource manager: Slurm & Hydra

Tools

Debugger support (Allinea DDT), Profiling
Compiler support (Intel, GCC)
MALP (collaboration with Paratools, compatible with Allinea plugins)
WI4MPI (collaboration with Bull/Atos)
JCHRONOSS (collaboration with Paratools)

http://mpc.hpcframework.com/

PAGE 47

Future Work

MPI
Full support of MPI 3.1

Portals 4 API and Atos/Bull BXI optimized support

Extra-threads scheduling

OpenMP
Support for parts of OpenMP 4.1 and OpenMP 5.0 (e.g., OMPT interface)

Compatibility with PGI ABI & GOMP ABI

Hybrid scheduling
New compiler support for automatic privatization: PGI

In-depth study of runtime stacking

Specialized-thread scheduling

From petascale to exascale
Language evaluation (PGAS, One sided)

Broader hardware support (Power, ARM)

Better hardware support (Intel KNL, GPU)

Commissariat à l’énergie atomique et aux énergies alternatives

CEA, DAM, DIF, F-91297 Arpajon, France

T. +33 (0)1 69 26 40 00

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

| PAGE 48

CEA-BSC Meeting | July 12th, 2016 |

