
Introducing Task-Containers as an

Alternative to Runtime Stacking

1

Jean-Baptiste BESNARD

jbbesnard@paratools.fr

EuroMPI, Edinburgh, UK

September 2016

Julien ADAM, Sameer SHENDE, Allen MALONY (ParaTools)

Marc PÉRACHE, Patrick CARRIBAULT, Julien JAEGER (CEA, DAM, DIF)

mailto:jbbesnard@paratools.fr?subject=
mailto:jbbesnard@paratools.fr?subject=

Introduction (1/2)

2

• Growing number of cores (Millions)

• Less memory per thread

• Larger nodes

• Many-core

MPI is a programming standard which shaped the use of

Supercomputers for the last two decades. It is now deeply

embedded in large industrial code-bases.

Is message passing suitable for new architectures ?

Opened discussions around hybrid parallelism (MPI+X)

Introduction (2/2)

3

What are the alternatives ?

MPI + X:

• OpenMP

• Cuda

• PGAS

• OpenCL

• Threads

• TBB

• …

Complex decision for a

« legacy » code. Which

of these X will remain in

a five year time-frame ?

Hybridization has a software

development cost.

MPI Challenges on Many-Core (1/4)

4

68 Cores

272 Hyper-threads

How many MPI processes ?

272 ? 68 * 4 ? 1 * 272 ?

MPI Challenges on Many-Core (2/4)

5

272 68 * 4 1 * 272

Parallelism Pure MPI
Hybrid mostly

MPI

Hybrid mostly

X

Increasing OS processes poses problems of :

• Memory replication (halo cells, distributed memory)

• Polling replication (no collaborative polling)

• Communication buffers replication (SHM, IB QP)

• Pressure on the batch manager (launch time)

• Scalability (problem size per core VS communication)

6

MPI is now installed on every machine and used in the vast

majority of HPC codes. What if we were able to transition

MPI codes, mitigating the need for hybridization ?

Evolutions in MPI Evolutions in Codes

Evolutions in runtimes

Trade-off

MPI Challenges on Many-Core (3/4)

MPI Challenges on Many-Core (4/4)

7

Evolutions in MPI Evolutions in runtimes Evolutions in codes

Endpoints
Optimizations for

many-core
Hybridization

MPI Sessions
Unified runtimes

(MPI + PGAS)

(MPI+OpenMP) …

Use of

RMAs (Shared

windows)

Ownership passing Thread-based MPI Manual parallelism

Minimal impact on end-users

Still an open research question

8

Evolutions in MPI Evolutions in runtimes Evolutions in codes

Endpoints
Optimization for

many-core
Hybridization

MPI Sessions
Unified runtimes

(MPI + PGAS)

(MPI+OpenMP)

Use of

RMAs (Shared

windows)

Ownership passing Thread-based MPI Manual parallelism

Minimal impact on end-users

MPI Challenges on Many-Core (4/4)

9

Running MPI in Threads (1/3)

IDEA : transpose the MPI standard to lightweight

threads transparently to get MPI+X advantages while

programming in pure MPI.

Socket 0 Socket 1

Numa 0

C0 C1 C0 C1

P0

M0 M1 M2 M3

P1 P2 P3

Socket 0 Socket 1

Numa 0

C0 C1 C0 C1

OS Process

M0 M1 M2 M3

Running MPI in Threads (2/3)

10

• Memory replication (halo cells, distributed memory)

• Polling replication (no collaborative polling)

• Communication buffers replication (SHM, IB QP)

• Pressure on the batch manager (launch time)

• Scalability (problem size per core VS communication)

Requires « shared-memory » MPI constructions

Addressed by thread-based

Increasing OS processes poses problems of :

Running MPI in Threads (3/3)

11

is gathering the work done in the MPC runtime around

compiler level privatization in order to transpose MPI codes

to user-level threads (ULT) without code modification.

Compatible with both GCC and ICC.

The Extended TLS Library

We open this work to the community (outside of MPC itself)

to ease the exploration of solutions involving ULT

TLS (Thread-Local Storage)

User-Level Threads and MPI (1/3)

12

We want to run processes as threads while preserving

the initial semantic, in particular global variables.

#include <mpi.h>

#include <stdio.h>

int rank = -1;

int main(int argc, char ** argv)

{
 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("My rank %d\n», rank);

 MPI_Finalize();

 return 0;

}

User-Level Threads and MPI (2/3)

13

Source-to-source Compilation time Runtime

Array expansion
Privatization to

TLS (AMPI, MPC)

GOT switching

(AMPI)

AMPI Photran
Code transformation

(globals as argument)
HMPI common heap

Global variables privatization, our alternatives :

OS Level : Thread-Shared Private Library (TSPL)

User-Level Threads and MPI (3/3)

14

int omprank = -1;

#pragma omp threadprivate(omprank)

OS Process

M0 M1

Rank Rank

T0 T1 T0 T1

th_var th_var th_var th_var

The compilation approach was retained

to support context stacking, allowing

the « transparent » transposition of OS

processes to threads.

int rank = -1;

__thread int th_var = -1;

ExTLS Privatisation Interface (1/3)

15

Standard case Privatization (C) Privatization (C++)

- __openmp openmp_local

__thread __thread thread_local

- __task task_local

Global __process process_local

By default Global variables are privatized to

task level (automatic privatization).

This lead to the definition of the task-container.

New keywords

ExTLS Privatisation Interface (2/3)

16

Mimic disjoint processes

in shared-memory

main 0 main 1

inherit_process()

ExTLS Privatisation Interface (3/3)

17

Inheritance as an alternative to fork,

in order to express contexts’ hierarchy.
main

MPI 1 MPI 2

Thread

inherit_task()

inherit_thread()

Building block for a thread-based MPI

using « task-containers »

ExTLS Implementation (1/2)

18

libC

libExTLS

ExTLS Implementation (2/2)

19

GCC GCC Plugin Linker Runtime

Add keywords in the

C and C++ front-end

Handle dynamic

initialization chains

Implement TLS

optimizations
Inheritance calls

Add new TLS levels

to handle ExTLS

Wrap TLS initializers

for each thread

Support for TLS

levels

Context switching

(ULT)

Add TLS definitions to

the x86_64 backend

Inject

Initializers (optional)

Export initializers in

the dynamic symbol

table

Topology detection

(HLS)

• Patched GCC (Front-end & Backend)

• GCC Plugin (Dynamic initializers)

• Patched linker (TLS optimizations)

• Runtime library (libExTLS)

Dynamic Initializers (1/3)

20

extern int * a;

int main(int argc, char ** argv)

{

printf(« Value %d\n», *a);

 return 0;

}

extern int b;

int * a = &b;

int b = 99;

main.c

a.c

b.c

When privatized, this code does not compile as « &b » is not a

constant (« b » being transitioned to TLS).

The role of the privatization plugin is to support this pattern

To do so, we proposed two methods:

• Code injection

• Introspection

Dynamic Initializers (2/3)

21

extern int * a;

int main(int argc, char ** argv)

{

tls_init_a();

printf(« Value %d\n», *a);

 return 0;

}

extern int b;

int * a = &b;

void tls_init_a()

{

tls_init();

}

static void tls_init()

{

 tls_init_b();

static int init_done = 0;

if(!init_done)

{

init_done = 1;

a = &b;

}

}

int b = 99;

void tls_init_b()

{

tls_init();

}

static void tls_init()

{

}

main.c a.c

b.c

Code injection

Dynamic Initializers (3/3)

22

extern int * a;

int main(int argc, char ** argv)

{

//tls_init_a();

printf(« Value %d\n», *a);

 return 0;
}

main.c

Introspection

Do not inject function calls at each function start. Self-scan the executable for

« tls_init_* » symbols and call them when launching each thread. TLS symbols must be

exported in the dynamic symbol table (reachable through dlsym even in the main exe).

Code Injection Introspection

HDF5 Test-Suite Wall-time 244,8 94,5

Performance Gains

Hierarchical Local Storage

23

Use Hierarchical Local Storage to store data at a given

topological level to avoid data replication.

M. Tchiboukdjian, P. Carribault, and M. Pérache, Hierarchical Local
Storage: Exploiting Flexible User-Data Sharing Between MPI Tasks, in

IEEE International Parallel and Distributed Processing (IPDPS’12), 2012.

int a,b ;

#pragma hls node(a)

#pragma hls numa(b)

Socket 0 Socket 1 Socket 0 Socket 1

Numa 0 Numa 1

C0 C1 C0 C1 C0 C1 C0 C1

MPC Process

T0 T1 T2 T3 T4 T5 T6 T7

a

b b

MPI One-Sided in Thread-Based

24

In a thread-based, one-sided operations are simple

memcpy, providing multiple advantages:

• Direct access to remote data (no shared pools)

• Immediate flush (shared window proprieties)

• Simpler synchronization primitives (RW locks)

• Optimized support for dynamic windows

• Easier support for derived data-types

Current development version of MPC implements MPI

3.1 One-sided taking advantage of thread-based with

promising results.

Already Working With MPC

25

• HDF5

• Pastix

• Scotch

• TBB

• Parallel Ocean Program (POP)

• MCB

• UMT2013

• Nekbone

• Lulesh

• Graph500

Process facilitated by libExTLS automatic

privatization support

Lulesh on the KNL

26

31,32
32,84

34,88

48,09

27,3
28,79

31,32

46,82

25,2
23,57

25,04

45,84

0

5

10

15

20

25

30

35

40

45

50

55

1 rank 8 ranks 27 ranks 64 ranks

Lulesh (MPI) over 200 iterations (Elapsed time in seconds)

OpenMPI-1.10 IntelMPI-5 MPC-3.1.0 (Threads)

All tests done with ICC

Conclusion

27

There are challenges for MPI when running on many-core processors
 Launch time, memory replication, buffer replication, …

There are different alternatives to address these challenges
 MPI, Applications or runtimes

Our solution approach is to run MPI on lightweight threads

 Addresses several of the challenges but introduces privatization issues

The ExTLS library is proposed to address these issues.

 Compatible with our own GCC and ICC (except dynamic initializers)

ExTLS is demonstrated in the context of MPC

 HLS, MPI One-sided, code porting

Future Work

28

• Use of task-containers for In-Situ
 Orthogonally embed IO processsing in an MPI program

• Define a multi-main MPMD program
 Multiple collaborating components in shared-memory

• MPC with One-sided is to be released in the next

version of MPC

The ExTLS library implementation is already available

online as part of the MPC 3.1.0 MPI runtime:

http://mpc.hpcframework.com

Introducing Task-Containers as an

Alternative to Runtime Stacking

29

Jean-Baptiste BESNARD

jbbesnard@paratools.fr

EuroMPI, Edinburgh, UK

September 2016

Julien ADAM, Sameer SHENDE, Allen MALONY (ParaTools)

Marc PÉRACHE, Patrick CARRIBAULT, Julien JAEGER (CEA, DAM, DIF)

mailto:jbbesnard@paratools.fr?subject=
mailto:jbbesnard@paratools.fr?subject=

