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Why do we need parallel computing? 

 

How can we exploit main resources from 
computers? 

 

What are the different approaches/paradigms 
of parallelism? 

 

Context 
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Why parallelism? 
Parallel computing is everywhere 

From cellphone processors to supercomputers 

Parallel programming paradigm 
Distributed-memory programming 

Shared-memory programming 

Hybrid programming 

Heterogeneous programming 

Goal 
Identify independent work to exploit parallelism 

 

Context 
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Hardware Evolution 

 

Hardware Challenges 

 

Parallel Computing 

 

Outline of the course 

Lecture Outline 
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HARDWARE EVOLUTION 

From single-core to clusters 
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Von-Neumann Architecture 

source: Wikipédia 
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Processor Architecture 

Architecture 
What is exposed to a (low-level) developer 
 

Examples 
Compute cores 
Registers 
Memory model 

Register-to-register, memory-register, … 

Stack management 
Function call convention 
Addressing mode 
Assembly instructions (i.e., ISA) 
… 



10 

Architecture vs. Micro-architecture 

Assembly instruction is the smallest atomic visible part 
executed by a processor 

This is part of architecture 

 

But there are many things underneath… 
 

Micro-architecture is defined as 
Implementation of ISA 

For each instruction, various implementations are possible 

Processor internals that helps implementing target ISA 
Some mechanisms are mandatory 

Some are optional and may help for performance, energy, safety… 
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Architecture Levels 

Source : Pr. David Patterson 
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Instruction Set Architecture 
Link between human and 
machine 

Human readable interface 
instead of writing code in 
binary 

 

Software stack 
Offer higher layers of 
abstraction to efficiently 
program architectures 
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Performance Improvement 

How to increase the performance of our simple processor? 

 

First things first: frequency! 
Double the frequency will double the overall performance 

Up to multiple GHz  
Billions of instructions per second 

How? 
Through component optimization 

With cost reduction of CPU operations 

 

Drawbacks: existing limits  
Power consumption 

Heat 

 

How can we go further? 
One possible solution: Pipeline 



Based on the following idea: 
Do not wait for an instruction to be done before starting the next one 

 

Impact: split the execution steps into small stages 
Each instruction goes through all stages 

 

Example from MIPS: 5 stages 
IF: instruction fetch 

ID: instruction decode 

EX: execution 

MEM: memory access 

WB: write back 

 

Pipeline 
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IF ID EX MEM WB 



Several limits 
Performance based on longest stage 

Hazards 

Longest stages 
Optimize each stage 

Increase the number of stages 

Hazards 
Structural hazards 

Pipeline blocked because of hardware resources 

Data hazards 

Pipeline blocked because of data dependencies 

Control hazards 

Pipeline blocked because of branch instruction 
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Pipeline 

Duplicate 
hardware 

Out-of-
order 

execution 

Branch 
prediction 
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Out-of-Order Execution 

Main idea: escape from linear assembly 
If next instruction cannot be executed, check the one after and execute it if no 
dependencies remain 

Basic algorithm: Tomasulo (in 60s) 
Extension of scoreboard technique 

3 stage: Issue/Execute/Write 

Issue if reservation station available and operand update 

Execute if operand available 

Write when execution is done and propagate result 

Advantages 
False-dependency removal 

Functional-unit abstraction 

Register renaming 

 



Branch instruction 
Need to wait for the outcome to be resolved 
Ability to guess the outcome… 
 

Finite-state automaton 
Example w/ 2-bit saturating up-down counter 
More complex implementation w/ history level 
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Branch Prediction 
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But we consider only one specific scenario 
We retire one instruction at a time performing one operation on one 
data 

 
What about extending that? 

Lead to Flynn taxonomy 
Depend on the number of concurrent instructions and data streams 
 

Single instruction, single data (SISD) 
Single instruction, multiple data (SIMD) 
Multiple instructions, single data (MISD) 
Multiple instructions, multiple data (MIMD) 
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Flynn Taxonomy 



Enlarge functional units to process one 
instruction with multiple data 

Notion of vectors 
 

Advantages 
Improve overall peak performance with reduced 
design cost 
Need more transistors, but some operations are 
very simple (e.g., addition) 
No need to change the rest of the processor 
 

Drawbacks 
Architectural mechanism 

New ISA: SSE (128b), AVX (256), AVX512 (512b) 

Need to express a large parallelism degree 
E.g., 16 flots on Intel Xeon Phi processors 

Suitable for regular codes 
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Single Instruction, Multiple Data 

Source: Wikipedia 



Multiple instructions 

Superscalar VLIW 
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But we consider only one instruction stream 
How can we go further? 
 

Solution #1 
Performance of one single regular processor is limited 
Can use transistors to duplicate some parts or even almost the whole 
processor! 
 Multicores 

 
Solution #2 

Exploit processor stalls with multiple instruction streams 
SMT (Intel Hyperthreading) 
Need to duplicate only parts of the processors 

 

Beyond Core 
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Multicore allows performance extension 
New transistors are dedicated to functional units 
Double the number of cores will double the performance (in theory!) 

 
Total number of cores still increasing 

10 years ago: 2 
Currently: 16 to 20 

 
But some parts of the processor do not scale very well with 
the number of cores! 

Cache coherency 
Memory access 
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Multicore Limits 



Intel Strategy 
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Intel Xeon Sandy Bridge 
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Intel Xeon Sandy Bridge 
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Intel Strategy 
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Intel Xeon Haswell 
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Intel Xeon Haswell 
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Intel Strategy 
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Intel Xeon Phi 
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Intel Xeon Phi 



Maintaining full performance on the same die is challenging 
Nearly impossible to add more chips due to heat dissipation 

How to go further to improve performance? 

Solution: put multiple processors together 
Each processor can be multicore or manycore 

Classical example: dual socket 

Unified shared memory but 
Non-Uniform Memory Access (NUMA) 

Needed to increase local performance 

Lead to the composition of one compute node 
Can be augmented with additional compute card like NVIDIA GPGPU 

 

Beyond Processor 
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But one node is not enough! 
Group of multiple nodes 

Name: cluster 

Current structure of supercomputers 

Nodes linked by network 
High-speed network 

IB, BXI, OPA, Aries, Tofu... 

Need different nodes 
Login nodes 

IO nodes 

Computational nodes (maybe multiple types) 

… 

Whole machine  distributed memory system 

 

Towards Clusters 
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First European Petaflopic machine 
Bull system installed at CEA in 2010 
 

Overview 

TERA 100 
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Regular node 

TERA 100 
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Heterogeneous node 

TERA 100 
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Co-design w/ Atos & Intel 

 

Organized into 2 phases 
 

Tera 1000-1 

Intel Xeon Haswell 

Dual-socket 16-core CPUs 

IB network 

 

Tera 1000-2 

Intel Xeon Phi KNL 

BXI network 

TERA 1000 
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SUPERCOMPUTERS 
OVERVIEW 

Classification and french ecosystem  
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Small application to compare machines 
Benchmark or miniapp or proxyapp 
Results  metrics able to compare machines 

 
Example: Top500 

Rank machines according to the computational power on regular 
codes 
Homepage: http://www.top500.org 

 
Benchmark: Linpack 

Linear solver based on linear algebra 
Relies on performance of DGEMM 
Towards HPCG (Conjugate Gradient) 

 

Supercomputer Classification 
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http://www.top500.org/


List of 500 most powerful machines 
Measure mainly the computational power 
According to Linpack results 
 

Updated twice a year 
June: ISC conference in Germany 
November: SC conference in US 

 
Machine Information 

Main info (rank, site) 
System (name and short description) 
Number of cores 
Performance (Rmax, Rpeak) 
Power 
 

Notes 
Performance in Tflops/s (1012 floating-point operations per second) 
Difference between max performance (Rmax) and Linpack result (Rpeak) 
Power measured in kW 

Top500 
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Sunway TaihuLight 

Total: 40,960 CPUs 
SW26010 

64bit RISC processors 

256 cores per chip 

64KB scratchpad 

Top500 #1 

40 Source: Report on the Sunway TaihuLight System by Jack Dongarra 



Rank Country System Cores Rmax Rpeak Power 

1 China Sunway 
TaihuLight 

10,649,600 93,014.6 125,435.9 15,371 
 

2 China Tianhe-2 3,120,000 33,862.7 54,902.4 17,808 

3 United 
States 

Titan 560,640 17,590.0 27,112.5 8,209 

4 United 
States 

Sequoia 1,572,864 17,173.2 20,132.7 7,890 

5 United 
States 

Cori 622,336 14,014.7 27,880.7 3,939 
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Top500 (#1 to #5) 



Rank Country System Cores Rmax Rpeak Power 

6 Japan Oakforest-
PACS 

556,104 13,554.6 24,913.5 2,719 

7 Japan K 705,024 10,510.0 11,280.4 12,660 

8 Swiss Piz Daint 206,720 9,779.0 15,988.0 1,312 

9 United 
States 

Mira 786,432 8,586.6 10,066.3 3,945 

10 United 
States 

Trinity 301,056 8,100.9 11,078.9 4,233 
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Top500 (#6 to #10) 



First comments 
Ability to reach almost 100 Pflops  

1017 floating-point operations per second 

Machines with lot of cores 
Power consumption up to 17 Mwatts 
Top 10 exhibits different system architectures 

 

Deeper analysis 
Big difference between Rmax and Rpeak 
Big difference between Rmax and Power 

 

Ordering based on power efficiency : Green500 
Sort supercomputers according to the ratio power consumption / 
Linpack performance 
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Top500 Analysis 
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Green500 

R Top500 System Cores Rmax Rpeak Mflops/W 

1 28 DGX SaturnV 60,512 3,307 4,896.5 9,462.09 

2 8 Piz Daint 206,720 9,779 15,988 7,453.51 

3 116 Shoubu 1,313,280 1,001 1,533.5 6,673.84 

4 1 Sunway 
TaihuLight 

10,649,600 93,014.6 125,435.9 6,051.3 

5 375 QPACE3 18,432 447.1 766.8 5,806.32 



Main ordering 
First machine is not the most powerful 

Rank in Top500 

Large difference between first and second machine: 27% 

Specific architecture seems to be more efficient 

Top500 and Green500 limits 
Linpack is a very specific benchmark 

Regular computation (mainly linear algebra) 

Few communications/synchronization between parallel units 

Need different benchmarks to classify supercomputers 
Most powerful machines on irregular codes: Graph500 

Based on graph traversal 

GTEPS: Billions of edges traversed per second 
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Green500 Analysis 
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Graph500 

R Top500 System Nodes Cores Pb Scale GTEPS 

1 7 K 82,944  663,552  40 38,621.4 

2 1 Sunway 
TaihuLight 

40,768  105,9968
0  

40 23,755.7 

3 4 Sequoia 98,304  157,2864  41 23,751  

4 9 Mira 49,152  786,432  40 14,982  

5 19 JUQUEEN 16,384  262,144  38 5,848  



Multiple ranking methods 
Correspond to various needs 
Highlight different architectures 
 

Where do the differences come from? 
Various domains of applications 
Depends on the target users 
Impact on the design choices 
Difference machine architectures 

Processors, memory, network… 

 
How did we end up with such current lists? 

A little bit of HPC/architecture history… 
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Conclusion on Ranking 



CDC 6600 
Built in 1964 

Contain a single CPU 

Cost: $8 Million 

Frequency: 40 MHz 

Freon cooling 

 

Performance 
3 Mflops 
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HPC History 

source: Extreme Tech 



Cray 1 
Built in 1976 

Designed by  

Seymour Cray  

Cost: $5 - $8 million 

Frequency: 80 MHz 

Freon cooling 

 

Performance 
 136 Mflops 
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HPC History 

source: Extreme Tech 



Cray XMP 
Built in 1982 

Up to 4 CPUs 

Frequency: 105Mhz 

Cost: $15 million 

 

Performance 
200 Mflops per CPU 

800 Mflops total! 
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HPC History 

source: Extreme Tech 



ASCI Red 
Build in 1997 

6,000 CPUs 

Intel Pentium Pros 

Regular processors 

Frequency: 200Mhz 

Cost: $46 million 

 

Performance 
> 1 Tflops 

First one! 

51 

HPC History 

source: Extreme Tech 



IBM Roadrunner 
Built in 2008 

Hybrid 

ADM Opteron 

IBM PowerPC 

Frequency:  

1.8GHz & 3.2GHz 

Cost: $100 million 

 

Performance 
> 1 Pflops 

First one! 
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HPC History 

source: Wikipedia 



Top500: 4th country w/ 20 systems  
4% of systems  

3.8% of global performance 

 

French Status 
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Rank Site System Cores Rmax Rpeak Power 

16 Total Pangea (SGI) 220,800 5,283.1 6,712.3 4,150 

50 Meteo 
France 

Prolix2 (BULL) 72,000 2,168.0 2,534.4 830.4 

51 Meteo 
France 

Beaufix2 (BULL) 73,440 2,157.4 2,585.1 830.2 

55 CEA Tera-1000-1 
(BULL) 

70;272 1;871.0 2586.0 1,042 

64 CINES Occigen (BULL) 50,544 1,628.8 2,102.6 934.8 



Teratec 
European pole of competence in high performance simulation 

Technology, research, dissemination 

Teaching & training 

Campus 
Group multiple companies & research labs 

Located in Bruyères-le-Châtel (close to CEA) 

Exascale Computing Research (Intel/CEA/UVSQ) 

InHP@CT seminars 

http://inhpact.hpcframework.com/ 

Forum organized each year 
June 19 & 20, 2018 @ Ecole Polytechnique 

Presentations & Exhibition 
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French Ecosystem 

http://inhpact.hpcframework.com/
http://inhpact.hpcframework.com/
http://inhpact.hpcframework.com/


Main French Vendor:  
Bull Atos 

 

Inside Top500 
7th vendors 

20 systems (4%) 

3.6% of global performance 

 

Co-design with CEA 
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French Ecosystem 



Co-design between Atos Bull & CEA 

 

Multiple machines inside Top500 made by BULL and hosted by 
CEA 

 

HPC at CEA  
Mainly CEA/DAM (Bruyères-le-Châtel) 

Different product lines 

 

French Vision: Bull & CEA 
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Part of defense simulation program 

History 
Program started in 1996 

Predicted to set up 3 machines 

First machine: Tera 1 (HP/COMPAQ) 
2,560 cores (Alpha CPU, 1 GHz) 

Quadrics interconnect 

Linpack performance: 3.18 Tflop/s 

Rank 4 in June 2002 

Second machine: Tera 10 (BULL) 
8,704 cores (Intel Itanium 2, 1.6GHz) 

Quadrics interconnect 

Linpack performance: 42.9 Tflop/s 

Rank 5 in June 2006 

TERA 
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Tera 100 (Bull) 
140,000 cores (Intel Xeon Nehalem) 

4,300 compute nodes 

IB QDR interconnect 

Linpack performance: 1,050 TFlop/s 

Rank 6 in November 2010 

 

Next steps 

Tera 1000 

Current TERA Machine 
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Research and Technology Computing Center 
Centre de calcul pour la recherche et la technologie 

French consortium 
Started in 2003 

Based on french academic & industry 

Goals 
Provide High Performance Computing resources for large scientific 
computations 

Foster a real synergy between research organizations, universities and 
industry  

Promote exchanges and scientific collaboration between partners. 

 

CCRT 
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Cobalt (Bull) 
Total: 39,816 compute cores (Intel Xeon Broadwell) 

Node w/ dual-socket (28 cores per node) 

IB EDR interconnect 

Rank 63 in June 2016 

1.299 Pflops 

 

Current CCRT machine 
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Partnership for Advanced Computing in Europe 
European Consortium 

25 member countries 

5 PRACE centers 
BSC (Spain) 

CINECA (Italy) 

CSCS (Switzerland) 

GCS (Germany) 

GENCI (France) 

Currently 
French machine Curie 

Located in TGCC (Bruyères-le-Chatel) 

 

PRACE 
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Computational power of supercomputer increases 
How is it possible? 

Is it specific to HPC? 

 

What are the main evolutions for the future? 

 

Need to understand the main parts to exploit such machines 
A little bit of hardware architecture… 

 

Current Status 
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HARDWARE CHALLENGES 

Main challenges 
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Conclusion from hardware presentation 
Processors are building blocks of clusters 
But one processor = cores + complex mechanisms 
Clusters are made of many other components that are crucial for 
overall performance 

 

List of major components 
Processors 
Memory 
Mother boards & nodes 
… 

 

What are the challenges related to these components? 
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Hardware Challenges 



Main trends 
Increase number of cores 

Larger compute units 

General purpose or dedicated 

Increase in the number of cores 
Per processor 

Per nodes 

Evolution of compute units 
Less microarchitectural mechanisms 

Larger vector units 

General purpose or dedicated 
Regular Intel Xeon multicore processors 

Intel Xeon Phi processors 

NVIDIA GPGPU 

 

Processor Challenges 

65 



Extended memory levels 
 

Evolution of caches 
Still some private caches 

May include scratchpad 

Shared caches  mesh-based coherency 

 

New memory levels 
High-Bandwidth Memory (HBM) 

Non-volatile memory (NVM) 

 

Memory Subsystem Challenges 
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Main trend 
Include challenges from processors and memory 

Increase in number of nodes 

 

Impacts 
Put the stress on network card (NIC) 

Need to handle communication with more neighbors  

Imply new design for switches 
Need to organize the network in specific topology (e.g., fat tree) 

 

Number of nodes 
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PARALLEL COMPUTING 

From cellphone to supercomputer 
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Tentative definition 
Ability to exploit multiple compute units at the same time 
to solve a problem 

Involve various domains 
Vehicule security, performance 

Chemistry (molecule interaction/reaction) 

Bio-informatics 

Energy﻿﻿  

Weather forecast 

Parallel Computing 
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Definitions 

Task 
Work to do 

Thread 
Implementation  of a task: logical sequence of sequential actions 
result of the execution of a program 

Process 
Instance of a program. A process consists of one or more threads that 
share a common address space. If a process has multiple threads, it is 
said to be multithreaded. 

Parallel computing 
Parallel computing consists of splitting a program in several tasks that 
can be executed at the same time on independent computing 
resources to reduce execution time/compute larger problems/try 
multiple solutions 
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What is Parallelism? 

Old idea to solve a problem more quickly and costly in time 
calculation 
 

One solution: to use several processing units (e.g. processors) 
 

Difficulty: organization of parallel tasks (parallel algorithmic): 
solve the initial problem correctly: dependencies between tasks 
the processing units must have constantly (useful) work to perform: 
distribution and (dynamic) load balancing 
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Sequential programming 

 
ORDERED suite of instructions to run to resolve the initial 
problem 

 

Sequential semantics: any instruction can only begin when the 
previous one is completed and its result available 

 

FIXED ORDER in the execution of all instructions 
Regardless of tasks dependencies 
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Parallel programming 

Several execution flows (instructions + data) 
 

Several instructions executed simultaneously 
 

Multiple processors (or cores) 
 

Highlights the actual dependencies between statements: 
 

the task T2 depends on the task T1 iff T2 needs the result of T1 (a 
correct result) 

 

If T2 does not depend on T1 and T1 does not depend on T2, then T1 
and T2 are independent tasks 

 

→ Two independent tasks can be executed in any order, or even 
simultaneously (e.g. in parallel)  
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Dependency graph 

Dependency graph: highlights dependency relationships between tasks to 
complete an action 

 
                             means that T2 depends on T1; 
 
Depth of graph gives dependency 
 
Width of graph gives independency (parallelism) ; 
 
Sequential programming: dependency n and parallelism 1  
 
 
Ex parallel programming with 10 tasks: dependency 6 and parallelism 2 
 
 

T1 T2 

T0 T1 … Ti-1 … Tn Ti Ti+1 

T0 T1 

T3 T4 T2 

T5 

T8 

T6 

T9 

T7 
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Concurrence 

Parallel tasks are executed: 
simultaneously : 
or alternately (e.g. a task can be stopped to execute another one, then 
its execution is resumed) ; 
or both; 
 

 Issue : tasks may access and modify common data (need 
critical section); 

 

 Solution : need to find mecanisms to ensure data 
coherency : locks and mutex (mutual exclusion) 
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Communication 

Communication and synchronisation : 
To ensure the consistency of a calculation, parallel tasks can have a « 
meeting point » before resuming their execution 

 

These « meeting points » are called synchronisation : 
If the synchronisation concerns all parallel tasks 

Global or collective synchronisation 

If the tasks have different addressing space 
Communications 

 

Communications 
Global synchronisation => global or collective communication 
synchronisation between 2 tasks => point-to-point communication 
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Parallelism types 

What are the sources of parallelism in an 
application? 

 

3 sources  : 
Control parallelism (tasks)  

Flow parallelism (pipeline) 

Data parallelism 
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Control parallelism 

Idea: « Do several things simultaneously » 
 
Simple constatation :  

An application is composed of tasks that can run simultaneously 
Example : the execution of a kitchen recipe with several cooks 

 
Exploitation of control parallelism consists in managing the dependencies 
between an application tasks in order to obtain an allocation of 
computation resources as optimal as possible 

Extraction of this parallelism from the dependency graph: width of the graph 
 
In practice, the degree of parallelism is low and often complex to set up 
(ex : ILP dans les processeurs) 

 

Fits to the following parallel programming models: 
MIMD (Multiple Instruction Multiple Data)  
MPMD (Multiple Program Multiple Data) : Processors run different programs 
with their own data 
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Flow parallelism 

Idea : " Chainwork " 
Work like a Pipeline 

A series of operations are applied on a data stream, generally composed of 
similar data 
The computing resources are associated with the actions and linked so that 
the results of the actions performed at time T are passed at time T + 1 to the 
next computing resource 
Example : vectorial machine 

Degree of parallelism depends on pipeline depth (number of stages) 
Working on vectorial data: 

Vectors must be long enough to minimise on the cost of filling the pipeline 

Data flow muste be as contiguous as possible (every stop empties the 
pipeline) 
 

IF ID EX WB MEM 

IF ID EX WB MEM 
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Data parallelism 

Idea : « Repeat actions on similar data«  
 
Share the data and not the tasks  

example : several kitchen clerks pealing a bunch of potatoes 

 
Degree of parallelism potentially very high, depending on the 
amount of data 
 
Fits the parallel programming model: SPMD (Single Program 
Multiple Data) 

All processors run the same program with their own data  
Viable for a large number of data  
Very effective for many intensive computing algorithms (scientific 
computation, animated films): afterwards, we will focus on this 
programming model 
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Parallel programming paradigm 

 
Independently of the hardware architectures of the machines, 
two parallel programming models emerge:  

distributed memory programming model  

shared memory programming model  

 
In theory, each model can be implemented on any type of 
architecture with collateral effects of varying performance 
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distributed memory prog. model  

Conditions : 
the parallel tasks work on separate memories, invisible from one 
another  
the data (tables, etc ...) are split (called distributed data) on the 
various parallel tasks 

Consequence: to ensure the accuracy of the final result, inter-
task communication becomes mandatory 
 
This is called programming by message passing 
 
Fits the SPMD model 
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distributed memory prog. model  

    

Implementation on distributed-memory architecture 
Easy because it is the same principle 

on a distributed memory machine, processes that have their own 
address spaces must send messages over the network to exchange 
information 

 

Implementation on shared-memory architecture 
Is not more difficult:  

through multiple processes using the shared memory segments for 
communications  

Through a multithreaded process using its memory to exchange 
information between threads 
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distributed memory prog. model 

 
Encapsulation of message exchanges, implemented 
by libraries, such as: 
 

PVM (Parallel Virtual Machine) : one of the first portable 
library of message passing 
 
MPI (Message Passing Interface) : the actual de-facto 
standard, coming from the collaborations of industrial 
partners and universities 

This cours is dedicated to this programming interface 

 
RMA: Remote Memory Access 
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shared memory prog. model  

Condition : 
Parallel tasks are sharing the same address space 

Consequence :  
Need to properly handle concurrent access to the same data (critical 
sections) 

Despite the apparent simplicity of programming, performance 
can be quickly degraded because: 

Critical sections are not parallel (by definition) 

Data locality and memory hierarchy are transparent to the user 
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shared memory prog. model  

 

Implementation on distributed-memory architecture 
difficult : how to « see » the whole memory ? 

DSM (Distributed Shared Memory) : software mecanism allowing to 
simulate a unified memory on top of a physically distributed memory 

May be very inneficient because the cost of distant accesses is hidden 

 

Implementation on shared-memory architecture 
Easy because it is the same principle 

In a multithreaded process, every thread can access the process 
memory (which can address the whole memory on the node) 
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shared memory prog. model 

API POSIX pthread : 
Normalised manipulation (POSIX) of threads in a process 
Fit the MPMD model 
 

OpenMP :  
Thread manipulation by directives 
 

At the present time, tools implementing the shared memory 
model offer a great deal of thought so that applications can 
make the best use of multicore processors 

TBB, Cilk++, ABB, … 
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Hybrid memory prog. model  

 

Combine both distributed and shared memory programming 
models 

 

Explicit hybrid programming: 
Explicitely use multiple programming models for distributed and 
shared memory paradigm 
MPI+X (X= OpenMP, Pthreads, TBB, …) 
 

Implicit programming model 
Programming models working on a unified view of the memory 

PGAS: Partitioned Global Address Space 

Software to simulate a unified memory 
DSM: Distributed Shared Memory 
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Heterogeneous prog. model  

 

Programmation on accelerator(s) attached to the node 
GPUs, Intel Knights Corner/Landing, Specialized cards 

 

Specific programming language 
Ex: CUDA for Nvidia GPUs, Intel LEO for KNL 

 

Can also use generic programming models 
C, C++, etc… for Intel KNL 

OpenMP accelerator directives for Intel KNL, Nvidia… 
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Parallelism benefit in cluster 

Distributed memory programming model 
Allows to work on all nodes of a supercomputer 
Parallelism potential benefits: tens (or hundreds) of thousands nodes 

 
Shared memory programming model 

Allows to work on all cores/hyperthreads of a node 
Parallelism potential benefits: up to 288 hyperthreads on an Intel KNL 

 
Vectorization 

Allows to use all computational resources in one instruction 
Parallelism potential benefits (depends on architecture vector length): 
up to 16 doubles / 32 simples  

 
 



OUTLINE OF THE COURSE 

MPI: Message Passing Interface 
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MPI: Message Passing Interface 

Lecture 1:  
MPI basic principles 
Point-to-point communications 

Lecture 2: 
MPI collective communications 

Lecture 3: 
Manipulation of MPI structures 

Lecture 4: 
Advanced collective communications 

Lecture 5: 
MPI Remote Memory Access 

Lecture 6: 
MPI I/O 

Lecture 7: 
MPI Forum and MPI Future Features 
Introduction to High Speed Network 

 
 


