
ENSIIE-HPC/BigData

Programmation Parallèle
MPI: Message Passing Interface

Julien Jaeger – julien.jaeger@cea.fr

mailto:julien.jaeger@cea.fr

Introduction to HPC and
Parallel Programming

ENSIIE-HPC/BigData-PP-IIP-Lecture 0

Why do we need parallel computing?

How can we exploit main resources from
computers?

What are the different approaches/paradigms
of parallelism?

Context

3

Why parallelism?
Parallel computing is everywhere

From cellphone processors to supercomputers

Parallel programming paradigm
Distributed-memory programming

Shared-memory programming

Hybrid programming

Heterogeneous programming

Goal
Identify independent work to exploit parallelism

Context

4

Hardware Evolution

Hardware Challenges

Parallel Computing

Outline of the course

Lecture Outline

5

HARDWARE EVOLUTION

From single-core to clusters

6

7

Von-Neumann Architecture

source: Wikipédia

8

More-Accurate Vision

PCI
Bridge

PCI
I/O

Cards

PCI
I/O

Cards

PCI

Cards
I/O

 PC
I

b
us

PCI
Bridge

PCI
I/O

Cards

PCI
I/O

Cards

PCI
Cards
I/O

PC
I

b
us

Memory

controller

Memory bank unit

DRAM

CPU

Interrupt
256-KB

L2$

Bus interface

Bus (64b data, 36b address, 66 MHz)

source: J.N. Amaral

9

Processor Architecture

Architecture
What is exposed to a (low-level) developer

Examples
Compute cores
Registers
Memory model

Register-to-register, memory-register, …

Stack management
Function call convention
Addressing mode
Assembly instructions (i.e., ISA)
…

10

Architecture vs. Micro-architecture

Assembly instruction is the smallest atomic visible part
executed by a processor

This is part of architecture

But there are many things underneath…

Micro-architecture is defined as
Implementation of ISA

For each instruction, various implementations are possible

Processor internals that helps implementing target ISA
Some mechanisms are mandatory

Some are optional and may help for performance, energy, safety…

11

Architecture Levels

Source : Pr. David Patterson

Compiler

Chain

Languages & Models

Algorithms & Applications

ISA

Data & Control

Functional units

Transistors, Wires & Pinns

So
ft

w
ar

e

H
ar

d
w

ar
e

Instruction Set Architecture
Link between human and
machine

Human readable interface
instead of writing code in
binary

Software stack
Offer higher layers of
abstraction to efficiently
program architectures

12

Performance Improvement

How to increase the performance of our simple processor?

First things first: frequency!
Double the frequency will double the overall performance

Up to multiple GHz
Billions of instructions per second

How?
Through component optimization

With cost reduction of CPU operations

Drawbacks: existing limits
Power consumption

Heat

How can we go further?
One possible solution: Pipeline

Based on the following idea:
Do not wait for an instruction to be done before starting the next one

Impact: split the execution steps into small stages
Each instruction goes through all stages

Example from MIPS: 5 stages
IF: instruction fetch

ID: instruction decode

EX: execution

MEM: memory access

WB: write back

Pipeline

13

IF ID EX MEM WB

Several limits
Performance based on longest stage

Hazards

Longest stages
Optimize each stage

Increase the number of stages

Hazards
Structural hazards

Pipeline blocked because of hardware resources

Data hazards

Pipeline blocked because of data dependencies

Control hazards

Pipeline blocked because of branch instruction

14

Pipeline

Duplicate
hardware

Out-of-
order

execution

Branch
prediction

15

Out-of-Order Execution

Main idea: escape from linear assembly
If next instruction cannot be executed, check the one after and execute it if no
dependencies remain

Basic algorithm: Tomasulo (in 60s)
Extension of scoreboard technique

3 stage: Issue/Execute/Write

Issue if reservation station available and operand update

Execute if operand available

Write when execution is done and propagate result

Advantages
False-dependency removal

Functional-unit abstraction

Register renaming

Branch instruction
Need to wait for the outcome to be resolved
Ability to guess the outcome…

Finite-state automaton
Example w/ 2-bit saturating up-down counter
More complex implementation w/ history level

16

Branch Prediction

Strongly
not

taken

Weakly
not

taken

Weakly
taken

Strongly
taken

not taken

taken taken taken taken

not taken not taken not taken

But we consider only one specific scenario
We retire one instruction at a time performing one operation on one
data

What about extending that?

Lead to Flynn taxonomy
Depend on the number of concurrent instructions and data streams

Single instruction, single data (SISD)
Single instruction, multiple data (SIMD)
Multiple instructions, single data (MISD)
Multiple instructions, multiple data (MIMD)

17

Flynn Taxonomy

Enlarge functional units to process one
instruction with multiple data

Notion of vectors

Advantages
Improve overall peak performance with reduced
design cost
Need more transistors, but some operations are
very simple (e.g., addition)
No need to change the rest of the processor

Drawbacks
Architectural mechanism

New ISA: SSE (128b), AVX (256), AVX512 (512b)

Need to express a large parallelism degree
E.g., 16 flots on Intel Xeon Phi processors

Suitable for regular codes
18

Single Instruction, Multiple Data

Source: Wikipedia

Multiple instructions

Superscalar VLIW

19

But we consider only one instruction stream
How can we go further?

Solution #1
Performance of one single regular processor is limited
Can use transistors to duplicate some parts or even almost the whole
processor!
 Multicores

Solution #2

Exploit processor stalls with multiple instruction streams
SMT (Intel Hyperthreading)
Need to duplicate only parts of the processors

Beyond Core

20

Multicore allows performance extension
New transistors are dedicated to functional units
Double the number of cores will double the performance (in theory!)

Total number of cores still increasing

10 years ago: 2
Currently: 16 to 20

But some parts of the processor do not scale very well with
the number of cores!

Cache coherency
Memory access

21

Multicore Limits

Intel Strategy

22

Intel Xeon Sandy Bridge

23

Intel Xeon Sandy Bridge

24

Intel Strategy

25

Intel Xeon Haswell

26

Intel Xeon Haswell

27

Intel Strategy

28

29

Intel Xeon Phi

30

Intel Xeon Phi

Maintaining full performance on the same die is challenging
Nearly impossible to add more chips due to heat dissipation

How to go further to improve performance?

Solution: put multiple processors together
Each processor can be multicore or manycore

Classical example: dual socket

Unified shared memory but
Non-Uniform Memory Access (NUMA)

Needed to increase local performance

Lead to the composition of one compute node
Can be augmented with additional compute card like NVIDIA GPGPU

Beyond Processor

31

But one node is not enough!
Group of multiple nodes

Name: cluster

Current structure of supercomputers

Nodes linked by network
High-speed network

IB, BXI, OPA, Aries, Tofu...

Need different nodes
Login nodes

IO nodes

Computational nodes (maybe multiple types)

…

Whole machine  distributed memory system

Towards Clusters

32

First European Petaflopic machine
Bull system installed at CEA in 2010

Overview

TERA 100

33

Regular node

TERA 100

34

Heterogeneous node

TERA 100

35

Co-design w/ Atos & Intel

Organized into 2 phases

Tera 1000-1

Intel Xeon Haswell

Dual-socket 16-core CPUs

IB network

Tera 1000-2

Intel Xeon Phi KNL

BXI network

TERA 1000

36

SUPERCOMPUTERS
OVERVIEW

Classification and french ecosystem

37

Small application to compare machines
Benchmark or miniapp or proxyapp
Results  metrics able to compare machines

Example: Top500

Rank machines according to the computational power on regular
codes
Homepage: http://www.top500.org

Benchmark: Linpack

Linear solver based on linear algebra
Relies on performance of DGEMM
Towards HPCG (Conjugate Gradient)

Supercomputer Classification

38

http://www.top500.org/

List of 500 most powerful machines
Measure mainly the computational power
According to Linpack results

Updated twice a year
June: ISC conference in Germany
November: SC conference in US

Machine Information

Main info (rank, site)
System (name and short description)
Number of cores
Performance (Rmax, Rpeak)
Power

Notes
Performance in Tflops/s (1012 floating-point operations per second)
Difference between max performance (Rmax) and Linpack result (Rpeak)
Power measured in kW

Top500

39

Sunway TaihuLight

Total: 40,960 CPUs
SW26010

64bit RISC processors

256 cores per chip

64KB scratchpad

Top500 #1

40 Source: Report on the Sunway TaihuLight System by Jack Dongarra

Rank Country System Cores Rmax Rpeak Power

1 China Sunway
TaihuLight

10,649,600 93,014.6 125,435.9 15,371

2 China Tianhe-2 3,120,000 33,862.7 54,902.4 17,808

3 United
States

Titan 560,640 17,590.0 27,112.5 8,209

4 United
States

Sequoia 1,572,864 17,173.2 20,132.7 7,890

5 United
States

Cori 622,336 14,014.7 27,880.7 3,939

41

Top500 (#1 to #5)

Rank Country System Cores Rmax Rpeak Power

6 Japan Oakforest-
PACS

556,104 13,554.6 24,913.5 2,719

7 Japan K 705,024 10,510.0 11,280.4 12,660

8 Swiss Piz Daint 206,720 9,779.0 15,988.0 1,312

9 United
States

Mira 786,432 8,586.6 10,066.3 3,945

10 United
States

Trinity 301,056 8,100.9 11,078.9 4,233

42

Top500 (#6 to #10)

First comments
Ability to reach almost 100 Pflops

1017 floating-point operations per second

Machines with lot of cores
Power consumption up to 17 Mwatts
Top 10 exhibits different system architectures

Deeper analysis
Big difference between Rmax and Rpeak
Big difference between Rmax and Power

Ordering based on power efficiency : Green500
Sort supercomputers according to the ratio power consumption /
Linpack performance

43

Top500 Analysis

44

Green500

R Top500 System Cores Rmax Rpeak Mflops/W

1 28 DGX SaturnV 60,512 3,307 4,896.5 9,462.09

2 8 Piz Daint 206,720 9,779 15,988 7,453.51

3 116 Shoubu 1,313,280 1,001 1,533.5 6,673.84

4 1 Sunway
TaihuLight

10,649,600 93,014.6 125,435.9 6,051.3

5 375 QPACE3 18,432 447.1 766.8 5,806.32

Main ordering
First machine is not the most powerful

Rank in Top500

Large difference between first and second machine: 27%

Specific architecture seems to be more efficient

Top500 and Green500 limits
Linpack is a very specific benchmark

Regular computation (mainly linear algebra)

Few communications/synchronization between parallel units

Need different benchmarks to classify supercomputers
Most powerful machines on irregular codes: Graph500

Based on graph traversal

GTEPS: Billions of edges traversed per second

45

Green500 Analysis

46

Graph500

R Top500 System Nodes Cores Pb Scale GTEPS

1 7 K 82,944 663,552 40 38,621.4

2 1 Sunway
TaihuLight

40,768 105,9968
0

40 23,755.7

3 4 Sequoia 98,304 157,2864 41 23,751

4 9 Mira 49,152 786,432 40 14,982

5 19 JUQUEEN 16,384 262,144 38 5,848

Multiple ranking methods
Correspond to various needs
Highlight different architectures

Where do the differences come from?
Various domains of applications
Depends on the target users
Impact on the design choices
Difference machine architectures

Processors, memory, network…

How did we end up with such current lists?

A little bit of HPC/architecture history…

47

Conclusion on Ranking

CDC 6600
Built in 1964

Contain a single CPU

Cost: $8 Million

Frequency: 40 MHz

Freon cooling

Performance
3 Mflops

48

HPC History

source: Extreme Tech

Cray 1
Built in 1976

Designed by

Seymour Cray

Cost: $5 - $8 million

Frequency: 80 MHz

Freon cooling

Performance
 136 Mflops

49

HPC History

source: Extreme Tech

Cray XMP
Built in 1982

Up to 4 CPUs

Frequency: 105Mhz

Cost: $15 million

Performance
200 Mflops per CPU

800 Mflops total!

50

HPC History

source: Extreme Tech

ASCI Red
Build in 1997

6,000 CPUs

Intel Pentium Pros

Regular processors

Frequency: 200Mhz

Cost: $46 million

Performance
> 1 Tflops

First one!

51

HPC History

source: Extreme Tech

IBM Roadrunner
Built in 2008

Hybrid

ADM Opteron

IBM PowerPC

Frequency:

1.8GHz & 3.2GHz

Cost: $100 million

Performance
> 1 Pflops

First one!

52

HPC History

source: Wikipedia

Top500: 4th country w/ 20 systems
4% of systems

3.8% of global performance

French Status

53

Rank Site System Cores Rmax Rpeak Power

16 Total Pangea (SGI) 220,800 5,283.1 6,712.3 4,150

50 Meteo
France

Prolix2 (BULL) 72,000 2,168.0 2,534.4 830.4

51 Meteo
France

Beaufix2 (BULL) 73,440 2,157.4 2,585.1 830.2

55 CEA Tera-1000-1
(BULL)

70;272 1;871.0 2586.0 1,042

64 CINES Occigen (BULL) 50,544 1,628.8 2,102.6 934.8

Teratec
European pole of competence in high performance simulation

Technology, research, dissemination

Teaching & training

Campus
Group multiple companies & research labs

Located in Bruyères-le-Châtel (close to CEA)

Exascale Computing Research (Intel/CEA/UVSQ)

InHP@CT seminars

http://inhpact.hpcframework.com/

Forum organized each year
June 19 & 20, 2018 @ Ecole Polytechnique

Presentations & Exhibition

54

French Ecosystem

http://inhpact.hpcframework.com/
http://inhpact.hpcframework.com/
http://inhpact.hpcframework.com/

Main French Vendor:
Bull Atos

Inside Top500
7th vendors

20 systems (4%)

3.6% of global performance

Co-design with CEA

55

French Ecosystem

Co-design between Atos Bull & CEA

Multiple machines inside Top500 made by BULL and hosted by
CEA

HPC at CEA
Mainly CEA/DAM (Bruyères-le-Châtel)

Different product lines

French Vision: Bull & CEA

56

Part of defense simulation program

History
Program started in 1996

Predicted to set up 3 machines

First machine: Tera 1 (HP/COMPAQ)
2,560 cores (Alpha CPU, 1 GHz)

Quadrics interconnect

Linpack performance: 3.18 Tflop/s

Rank 4 in June 2002

Second machine: Tera 10 (BULL)
8,704 cores (Intel Itanium 2, 1.6GHz)

Quadrics interconnect

Linpack performance: 42.9 Tflop/s

Rank 5 in June 2006

TERA

57

Tera 100 (Bull)
140,000 cores (Intel Xeon Nehalem)

4,300 compute nodes

IB QDR interconnect

Linpack performance: 1,050 TFlop/s

Rank 6 in November 2010

Next steps

Tera 1000

Current TERA Machine

58

Research and Technology Computing Center
Centre de calcul pour la recherche et la technologie

French consortium
Started in 2003

Based on french academic & industry

Goals
Provide High Performance Computing resources for large scientific
computations

Foster a real synergy between research organizations, universities and
industry

Promote exchanges and scientific collaboration between partners.

CCRT

59

Cobalt (Bull)
Total: 39,816 compute cores (Intel Xeon Broadwell)

Node w/ dual-socket (28 cores per node)

IB EDR interconnect

Rank 63 in June 2016

1.299 Pflops

Current CCRT machine

60

Partnership for Advanced Computing in Europe
European Consortium

25 member countries

5 PRACE centers
BSC (Spain)

CINECA (Italy)

CSCS (Switzerland)

GCS (Germany)

GENCI (France)

Currently
French machine Curie

Located in TGCC (Bruyères-le-Chatel)

PRACE

61

Computational power of supercomputer increases
How is it possible?

Is it specific to HPC?

What are the main evolutions for the future?

Need to understand the main parts to exploit such machines
A little bit of hardware architecture…

Current Status

62

HARDWARE CHALLENGES

Main challenges

63

Conclusion from hardware presentation
Processors are building blocks of clusters
But one processor = cores + complex mechanisms
Clusters are made of many other components that are crucial for
overall performance

List of major components
Processors
Memory
Mother boards & nodes
…

What are the challenges related to these components?

64

Hardware Challenges

Main trends
Increase number of cores

Larger compute units

General purpose or dedicated

Increase in the number of cores
Per processor

Per nodes

Evolution of compute units
Less microarchitectural mechanisms

Larger vector units

General purpose or dedicated
Regular Intel Xeon multicore processors

Intel Xeon Phi processors

NVIDIA GPGPU

Processor Challenges

65

Extended memory levels

Evolution of caches
Still some private caches

May include scratchpad

Shared caches  mesh-based coherency

New memory levels
High-Bandwidth Memory (HBM)

Non-volatile memory (NVM)

Memory Subsystem Challenges

66

Main trend
Include challenges from processors and memory

Increase in number of nodes

Impacts
Put the stress on network card (NIC)

Need to handle communication with more neighbors

Imply new design for switches
Need to organize the network in specific topology (e.g., fat tree)

Number of nodes

67

PARALLEL COMPUTING

From cellphone to supercomputer

68

Tentative definition
Ability to exploit multiple compute units at the same time
to solve a problem

Involve various domains
Vehicule security, performance

Chemistry (molecule interaction/reaction)

Bio-informatics

Energy﻿﻿

Weather forecast

Parallel Computing

69

70

Definitions

Task
Work to do

Thread
Implementation of a task: logical sequence of sequential actions
result of the execution of a program

Process
Instance of a program. A process consists of one or more threads that
share a common address space. If a process has multiple threads, it is
said to be multithreaded.

Parallel computing
Parallel computing consists of splitting a program in several tasks that
can be executed at the same time on independent computing
resources to reduce execution time/compute larger problems/try
multiple solutions

71

What is Parallelism?

Old idea to solve a problem more quickly and costly in time
calculation

One solution: to use several processing units (e.g. processors)

Difficulty: organization of parallel tasks (parallel algorithmic):
solve the initial problem correctly: dependencies between tasks
the processing units must have constantly (useful) work to perform:
distribution and (dynamic) load balancing

72

Sequential programming

ORDERED suite of instructions to run to resolve the initial
problem

Sequential semantics: any instruction can only begin when the
previous one is completed and its result available

FIXED ORDER in the execution of all instructions
Regardless of tasks dependencies

73

Parallel programming

Several execution flows (instructions + data)

Several instructions executed simultaneously

Multiple processors (or cores)

Highlights the actual dependencies between statements:

the task T2 depends on the task T1 iff T2 needs the result of T1 (a
correct result)

If T2 does not depend on T1 and T1 does not depend on T2, then T1
and T2 are independent tasks

→ Two independent tasks can be executed in any order, or even
simultaneously (e.g. in parallel)

74

Dependency graph

Dependency graph: highlights dependency relationships between tasks to
complete an action

 means that T2 depends on T1;

Depth of graph gives dependency

Width of graph gives independency (parallelism) ;

Sequential programming: dependency n and parallelism 1

Ex parallel programming with 10 tasks: dependency 6 and parallelism 2

T1 T2

T0 T1 … Ti-1 … Tn Ti Ti+1

T0 T1

T3 T4 T2

T5

T8

T6

T9

T7

75

Concurrence

Parallel tasks are executed:
simultaneously :
or alternately (e.g. a task can be stopped to execute another one, then
its execution is resumed) ;
or both;

 Issue : tasks may access and modify common data (need
critical section);

 Solution : need to find mecanisms to ensure data
coherency : locks and mutex (mutual exclusion)

76

Communication

Communication and synchronisation :
To ensure the consistency of a calculation, parallel tasks can have a «
meeting point » before resuming their execution

These « meeting points » are called synchronisation :
If the synchronisation concerns all parallel tasks

Global or collective synchronisation

If the tasks have different addressing space
Communications

Communications
Global synchronisation => global or collective communication
synchronisation between 2 tasks => point-to-point communication

77

Parallelism types

What are the sources of parallelism in an
application?

3 sources :
Control parallelism (tasks)

Flow parallelism (pipeline)

Data parallelism

78

Control parallelism

Idea: « Do several things simultaneously »

Simple constatation :

An application is composed of tasks that can run simultaneously
Example : the execution of a kitchen recipe with several cooks

Exploitation of control parallelism consists in managing the dependencies
between an application tasks in order to obtain an allocation of
computation resources as optimal as possible

Extraction of this parallelism from the dependency graph: width of the graph

In practice, the degree of parallelism is low and often complex to set up
(ex : ILP dans les processeurs)

Fits to the following parallel programming models:
MIMD (Multiple Instruction Multiple Data)
MPMD (Multiple Program Multiple Data) : Processors run different programs
with their own data

79

Flow parallelism

Idea : " Chainwork "
Work like a Pipeline

A series of operations are applied on a data stream, generally composed of
similar data
The computing resources are associated with the actions and linked so that
the results of the actions performed at time T are passed at time T + 1 to the
next computing resource
Example : vectorial machine

Degree of parallelism depends on pipeline depth (number of stages)
Working on vectorial data:

Vectors must be long enough to minimise on the cost of filling the pipeline

Data flow muste be as contiguous as possible (every stop empties the
pipeline)

IF ID EX WB MEM

IF ID EX WB MEM

80

Data parallelism

Idea : « Repeat actions on similar data«

Share the data and not the tasks

example : several kitchen clerks pealing a bunch of potatoes

Degree of parallelism potentially very high, depending on the
amount of data

Fits the parallel programming model: SPMD (Single Program
Multiple Data)

All processors run the same program with their own data
Viable for a large number of data
Very effective for many intensive computing algorithms (scientific
computation, animated films): afterwards, we will focus on this
programming model

81

Parallel programming paradigm

Independently of the hardware architectures of the machines,
two parallel programming models emerge:

distributed memory programming model

shared memory programming model

In theory, each model can be implemented on any type of
architecture with collateral effects of varying performance

82

distributed memory prog. model

Conditions :
the parallel tasks work on separate memories, invisible from one
another
the data (tables, etc ...) are split (called distributed data) on the
various parallel tasks

Consequence: to ensure the accuracy of the final result, inter-
task communication becomes mandatory

This is called programming by message passing

Fits the SPMD model

83

distributed memory prog. model

Implementation on distributed-memory architecture
Easy because it is the same principle

on a distributed memory machine, processes that have their own
address spaces must send messages over the network to exchange
information

Implementation on shared-memory architecture
Is not more difficult:

through multiple processes using the shared memory segments for
communications

Through a multithreaded process using its memory to exchange
information between threads

84

distributed memory prog. model

Encapsulation of message exchanges, implemented
by libraries, such as:

PVM (Parallel Virtual Machine) : one of the first portable
library of message passing

MPI (Message Passing Interface) : the actual de-facto
standard, coming from the collaborations of industrial
partners and universities

This cours is dedicated to this programming interface

RMA: Remote Memory Access

85

shared memory prog. model

Condition :
Parallel tasks are sharing the same address space

Consequence :
Need to properly handle concurrent access to the same data (critical
sections)

Despite the apparent simplicity of programming, performance
can be quickly degraded because:

Critical sections are not parallel (by definition)

Data locality and memory hierarchy are transparent to the user

86

shared memory prog. model

Implementation on distributed-memory architecture
difficult : how to « see » the whole memory ?

DSM (Distributed Shared Memory) : software mecanism allowing to
simulate a unified memory on top of a physically distributed memory

May be very inneficient because the cost of distant accesses is hidden

Implementation on shared-memory architecture
Easy because it is the same principle

In a multithreaded process, every thread can access the process
memory (which can address the whole memory on the node)

87

shared memory prog. model

API POSIX pthread :
Normalised manipulation (POSIX) of threads in a process
Fit the MPMD model

OpenMP :
Thread manipulation by directives

At the present time, tools implementing the shared memory
model offer a great deal of thought so that applications can
make the best use of multicore processors

TBB, Cilk++, ABB, …

88

Hybrid memory prog. model

Combine both distributed and shared memory programming
models

Explicit hybrid programming:
Explicitely use multiple programming models for distributed and
shared memory paradigm
MPI+X (X= OpenMP, Pthreads, TBB, …)

Implicit programming model
Programming models working on a unified view of the memory

PGAS: Partitioned Global Address Space

Software to simulate a unified memory
DSM: Distributed Shared Memory

89

Heterogeneous prog. model

Programmation on accelerator(s) attached to the node
GPUs, Intel Knights Corner/Landing, Specialized cards

Specific programming language
Ex: CUDA for Nvidia GPUs, Intel LEO for KNL

Can also use generic programming models
C, C++, etc… for Intel KNL

OpenMP accelerator directives for Intel KNL, Nvidia…

90

Parallelism benefit in cluster

Distributed memory programming model
Allows to work on all nodes of a supercomputer
Parallelism potential benefits: tens (or hundreds) of thousands nodes

Shared memory programming model

Allows to work on all cores/hyperthreads of a node
Parallelism potential benefits: up to 288 hyperthreads on an Intel KNL

Vectorization

Allows to use all computational resources in one instruction
Parallelism potential benefits (depends on architecture vector length):
up to 16 doubles / 32 simples

OUTLINE OF THE COURSE

MPI: Message Passing Interface

91

92

MPI: Message Passing Interface

Lecture 1:
MPI basic principles
Point-to-point communications

Lecture 2:
MPI collective communications

Lecture 3:
Manipulation of MPI structures

Lecture 4:
Advanced collective communications

Lecture 5:
MPI Remote Memory Access

Lecture 6:
MPI I/O

Lecture 7:
MPI Forum and MPI Future Features
Introduction to High Speed Network

