G AVAW D!
-...Vs\vn.-.ll.l
VAN /ISR

W L L)

..- SV D
"4?2\?.\:-:‘-:‘

mailto:julien.jaeger@cea.fr

G AVAW D!
-...Vs\vn.-.ll.l
VAN /ISR

W L L)

..- SV D
"4?2\?.\:-:‘-:‘

Context

S
= Why do we need parallel computing?

= How can we exploit main resources from
computers?

= What are the different approaches/paradigms
of parallelism?

Context
U
= Why parallelism?

= Parallel computing is everywhere
= From cellphone processors to supercomputers

» Parallel programming paradigm

= Distributed-memory programming
= Shared-memory programming

= Hybrid programming

= Heterogeneous programming

= Goal

= |ldentify independent work to exploit parallelism

Lecture Outline

77

= Hardware Evolution

=

= Hardware Challenges
= Parallel Computing

= Outline of the course

HARDWARE EVOLUTION
S ——————————

Von-Neumann Architecture

—-,,

Input
Device

source: Wikipédia

Central Processing Unit

Control Unit

Arithmetic/Logic Unit

Memory Unit

o

Output
Device

More-Accurate Vision

[P

a

CPU

Interrupt 2?’%-$KB

Bus interface

PCI PCT Memory
Bridge Bridge controller

PCI PCI
Cards |e—>» Cards
I/0 I/0
CUI (@) CUI o

source: J.N. Amaral

A

PCTI bus
PCI bus

Processor Architecture

S I

» Architecture
= What is exposed to a (low-level) developer

= Examples
= Compute cores
= Registers
= Memory model
Register-to-register, memory-register, ...
= Stack management
= Function call convention
» Addressing mode
= Assembly instructions (i.e., ISA)

Architecture vs. Micro-architecture

77

= Assembly instruction is the smallest atomic visible part
executed by a processor
= Thisis part of architecture

= But there are many things underneath...

= Micro-architecture is defined as
» Implementation of ISA
For each instruction, various implementations are possible

= Processor internals that helps implementing target ISA
Some mechanisms are mandatory

Some are optional and may help for performance, energy, safety...

=]

10

Architecture Levels
_-,,

= Instruction Set Architecture

= Link between human and
machine

= Human readable interface
instead of writing code in
binary

Algorithms & Applications

anguages & Models

Compiler
Chain

» Software stack IsA

= Offer higher layers of
abstraction to efficiently

program architectures Data & Control

Functional units

_ Transistors, Wires & Pinns
Source : Pr. David Patterson

Software

Hardware

<]

11

Performance Improvement

S I

= How to increase the performance of our simple processor?

= First things first: frequency!
» Double the frequency will double the overall performance
» Up to multiple GHz
Billions of instructions per second
= How?
= Through component optimization
= With cost reduction of CPU operations

= Drawbacks: existing limits
= Power consumption

= Heat
12

77

Pipeline

Based on the following idea:

Do not wait for an instruction to be done before starting the next one

Each instruction goes through all stages

IF: instruction fetch

ID: instruction decode

EX: execution

MEM: memory access

WB: write back

Example from MIPS: 5 stages

Impact: split the execution steps into small stages

ID

EX

MEM

H

H

=

13

Pipeline

[P

Duplicate
hardware

-'7’

= Several limits
= Performance based on longest stage
= Hazards

= Longest stages

= Optimize each stage Out-of-

order
execution

= Increase the number of stages

= Hazards

= Structural hazards
» Pipeline blocked because of hardware resources

Branch
prediction

= Data hazards
» Pipeline blocked because of data dependencies

NS

A\

= Control hazards

» Pipeline blocked because of branch instruction »

Out-of-Order Execution

77

» Main idea: escape from linear assembly

= If next instruction cannot be executed, check the one after and execute it if no
dependencies remain

» Basic algorithm: Tomasulo (in 60s)

= Extension of scoreboard technique

= 3 stage: Issue/Execute/Write
Issue if reservation station available and operand update
Execute if operand available
Write when execution is done and propagate result

= Advantages
= False-dependency removal
= Functional-unit abstraction

= Register renaming
15

Branch Prediction

—-,,

= Branch instruction
= Need to wait for the outcome to be resolved
= Ability to guess the outcome...

o

» Finite-state automaton
= Example w/ 2-bit saturating up-down counter
= More complex implementation w/ history level

taken taken taken taken

not taken not taken not taken not taken

16

Flynn Taxonomy

77

» But we consider only one specific scenario

» We retire one instruction at a time performing one operation on one
data

» What about extending that?

» Lead to Flynn taxonomy
» Depend on the number of concurrent instructions and data streams

Single instruction, single data (SISD)

Single instruction, multiple data (SIMD)
Multiple instructions, single data (MISD)
Multiple instructions, multiple data (MIMD)

17

Single Instruction, Multiple Data

S I

» Enlarge functional units to process one
instruction with multiple data

= Notion of vectors SIMD Instruction Pool
= Advantages { N
= Improve overall peak performance with reduced
design cost —=
= Need more transistors, but some operations are | & *(PU |
very simple (e.g., addition) 8
®
= No need to change the rest of the processor A »|PU [«
= Drawbacks »|PU [«

= Architectural mechanism
New ISA: SSE (128b), AVX (256), AVX512 (512b)
= Need to express a large parallelism degree
E.g., 16 flots on Intel Xeon Phi processors
= Suitable for regular codes

Source: Wikipedia 18

Multiple instructions

S I

Superscalar VLIW

Compiler l

Compiler

Instruction Scheduling Functi

VLIW Instruction Scheduling

19

Beyond Core

77

» But we consider only one instruction stream
» How can we go further?

=

= Solution #1

» Performance of one single regular processor is limited

= Can use transistors to duplicate some parts or even almost the whole
processor!

= ¥ Multicores

= Solution #2
= Exploit processor stalls with multiple instruction streams
= =PSMT (Intel Hyperthreading)
= Need to duplicate only parts of the processors

20

Multicore Limits

77

= Multicore allows performance extension
= New transistors are dedicated to functional units
= Double the number of cores will double the performance (in theory!)

= Total number of cores still increasing
= 10 vyears ago: 2
= Currently: 16 to 20

= But some parts of the processor do not scale very well with
the number of cores!
= Cache coherency
= Memory access

21

3

I
-8
=
o)
w
=

Intel Strategy

Intel® Xeon® Processor Roadmap

87 GF1 OPS 185 GF\OPS

|DP.FP ek

Sanly

Brid je

Al limaframes, fenures

Plan for HPC

2013 2014

Knights Corner

1.01 TFLOPS
P peak

4-6 GFLOPS/W

~225 GFLOPS ~ 500 GFLOPS

(GP-F 2 peak) [OP-F P peal]

Bridge

22nm

Future

Knights Landing

tbd GFLOPS

|DB-F.P. peak]

I4ren

J

~3+ TFLOPS

14-16 GFLOPS/W

thd GFLOPS

[DP-F.P. poak]

Ivy Haswell ‘ ‘ Broadwell) ’ Skylake ‘ -

22

Intel Xeon Sandy Bridge

23

RSP NT RSP AAALATA

it L Sy

Sl |
¥are

o bl

~
"

1
nn

"

A A '
\-Q'h[u vlil‘ﬂ"{

T
.\‘lk
¥,

Intel Xeon Sandy Bridge

—7

Xeon E5-2600 Block Diagraﬁf/r

Bi-Directional Full Ring QPi Agent |
e 32B/clk/agent '
e 8 Core/LLC slices
e Last Level Cache Core |core cachemo| LLC || core
e 32B/clk/slice % |
e Dual QPI Agent
 Integrated I/0 e e cacheBo) LLC | Cor |0
e Home Agent ﬁ ﬁ

e Integerated
Memory Controller

- Connected to HA —

* PCU Core Core CacheBo| LLC Core Core

e “Ubox"” () Q
B

[/
UBox PCU .
T]

Globally routed

CacheBo

CacheBo

Core |Core CacheBo| LLC Core

CacheBo | LLC

CacheBo| LLC

Block Diagram Illustrative only. Number of processor cores will
vary with different processor models based on the Sandy Bridge 1
Microarchitecture. Represents server processor implementation.

DDR3
Home | Mem

Agent | cur r Embargo Until March 6, 2012 9amPST

Intel Strategy

Intel® Xeon® Processor Roadmap
Plan for HPC

2013 2014 Future

Knights Corner Knights Landing

220m 1.01 TFLOPS 14om ~3+ TFLOPS

AUY3 el
AVX3l DO-F P peek)

KNI [OP-EP. peak

PCle Card 4-6 GFLOPS/W Socket & PCle Covd 14-16 GFLOPS/W

3

T
o
=
o
w
=

GDDRS

thd GFLOPS

87 GFLOPS 185 GFLOPS ~225 GFLOPS 500 GFLOPS tbd GFLOPS
|DPFP. peak] OF-F P. peak [OP-F P pesk) |DP-FP. peak) [DP-F.P. poak|

“

Sandy Ivy Stry Skylak
Westmere Bridge Bridge Haswell ‘ ‘ Broadwell ‘ ylake

J S

320w 22nen 14w 14nm
AVX AVX32
DOR3 O0Rd
Plle3 PCled

Forecast and Estimations, in Planning 8 Targets

Potontial Suture optons, subject 1o change without notice. Codenames
Al mafeanes, festunes, prodocts and dates are Srelminary orecails and SubCt 10 chande withou! Tunther notication

Intel Xeon Haswell

- W
BT

A mud
i | Eessnusney TR
Bt | | |||]| [LI i

== r O EEE B

i | SRR NE BN

= - R
,‘..';;‘!llll‘llv‘III‘Il13315_}&7'_‘}'{li e

M

U e MO
B B EE RS ;&1 M| SN
a0 [:

- EENEEEEEEE-

repergmare s Thasiesiaon.
Midddadadat .
I ») TP TP IR T Y

Intel Xeon Haswell

—7

Haswell EP Die Configurations

14-18 Core (HCC) 10-12 Core (MCC)

—

-

PCrE|[PLIE| POl [FEFE

£l
-
i |

£6 || 6
£ || ¥5

B

[§]
s | |] | |1

i | kB

i
7T
Egg

Mot representative of actual die-sizes, orientation and layouts — for informational use only.

Columns Home Agents Cores Power (W) Transitors (B) Die Area (mm?2)
HCC 4 2 14-18 110-145 5.69 662
MCC 3 2 6-12 65-160 3.84 492
LCC 2 1 4-8 55-140 2.60 354

27

Intel Strategy

Intel® Xeon® Processor Roadmap
Plan for HPC

2013 2014

Ww Knights Landing

22nv 1.01 TFLOPS ~3+ TFLOPS
KNI [DP-£.P. peak DO-F 2. pask)
PCle Card 4-6 GFLOPS/W Socket & Covd 14-16 GFLOPS/W

GDODRS

a

T
a
=
(o}
w
=

87 GFLOPS 185 GFLOPS ~225 GFLOPS ~ 500 GFLOPS tbd GFLOPS thd GFLOPS

|DPFP. peat] P-F P peak |OP-F P peat) [OP-F P peal] |DP-FP. peat) [DP-F.P. poak]

“

Sandy Ivy Skylake
Westmere Bridge Bridge Haswell ’ Broadwell ’ ‘ y

/

- 5 e a P
32rm 22nem 22nm 14rwn 24

AVX AVX2
DOR3 DOR4
Plles PCle3

AVX32
O0R4

PCI4

Forecast and Estimations, in Planning B Targets

Potential Suture optons, sutject 1o change without notice. Codenames
Al maframnes, fastunes, prodocts and dates are orelminary SoreCails and SUBHECt 10 change without Tunher NOMICAto:

.m
ol
C
O
D
x
O
)
=

Intel Xeon Phi

—-,,

Knights Landing Overview

2 x16 X4
MCDRAJ Mcnnﬂ 1x4 DMI \\MCDRAM bcomm
o 0T

YRR

w
w

36 Tiles
connected by
2D Mesh
Interconnect

2000
20 O0O

wrmZ22>I0
WwWrFEFmMZZ>IO

MCDRAM MCDRAM

Package

) =

Omni-path not shown

Chip: 36 Tiles interconnected by 2D Mesh
Tile: 2 Cores + 2 VPU/core + 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW
DDR4: 6 channels @ 2400 up to 384GB

10: 36 lanes PCle Gen3. 4 lanes of DMI for chipset

Node: 1-Socket only

Fabric: Omni-Path on-package (not shown)

Vector Peak Perf: 3+TF DP and 6+TF SP Flops
Scalar Perf: ~3x over Knights Corner
Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+

30

Beyond Processor

S I

= Maintaining full performance on the same die is challenging

= Nearly impossible to add more chips due to heat dissipation

= How to go further to improve performance?

= Solution: put multiple processors together
= Each processor can be multicore or manycore
= Classical example: dual socket

» Unified shared memory but
= Non-Uniform Memory Access (NUMA)
= Needed to increase local performance

» Lead to the composition of one compute node
= Can be augmented with additional compute card like NVIDIA GPGPU

31

Towards Clusters

77

= But one node is not enough!

= Group of multiple nodes

=

= Name: cluster
= Current structure of supercomputers

= Nodes linked by network

= High-speed network
IB, BXI, OPA, Aries, Tofu...

= Need different nodes
» Login nodes
= |0 nodes
= Computational nodes (maybe multiple types)

= Whole machine = distributed memory system

32

TERA 100

77

» First European Petaflopic machine
= Bull system installed at CEA in 2010

=

= Overview

MRCHINE CABINET COMPUTE NODE MULTICORE CPU COMPUTE CORE

inte])

XE’O/)‘
p,DCeSS or

~ 20 NODES PER CABINET 4 CPUS PER NODE 8 CORES PER CPU
TOTAL OF 4,370 NODES TOTAL OF 17,480 CPUS TOTAL OF 139,840 CORES

33

220 CABINETS

—7

TERA 100

= Regular node

MEMORY

CONTROLLER

PROCESSOR

NUMA NODE |
==
g
=
PROCESSOR PROCESSOR
INTERCONNECT NETWORK

CONTROLLER

PROCESSOR

MEMORY

MEMORY

34

.4=ii"

TERA 100

= Heterogeneous node

¢

NUIOA oDE

NUMA NODE

MEMORY
CONTROLLER

MEMORY
CONTROLLER

MEMORY

DMA
CONTROLLER

PROCESSOR |

PCIE

HARDWARE ACCELERATOR

D= o
CONTROLLER

)

35

TERA 1000

—7

= Co-design w/ Atos & Intel

=

tI'E‘RA 1000

= Organized into 2 phases

= Tlera 1000-1

Intel Xeon Haswell
Dual-socket 16-core CPUs
IB network

= Tera 1000-2
Intel Xeon Phi KNL
BXI network

36

SUPERCOMPUTERS
OVERVIEW

Supercomputer Classification

77

= Small application to compare machines
= Benchmark or miniapp or proxyapp
= Results = metrics able to compare machines

=

= Example: Top500

= Rank machines according to the computational power on regular
codes

= Homepage: http://www.top500.org

= Benchmark: Linpack 500

= Linear solver based on linear algebra The List.
= Relies on performance of DGEMM
= Towards HPCG (Conjugate Gradient)

38

http://www.top500.org/

Top500

—7

= List of 500 most powerful machines

» Measure mainly the computational power
» According to Linpack results Isc High Performance

The HPC Event.

= Updated twice a year
» June: ISC conference in Germany
» November: SC conference in US

= Machine Information
= Main info (rank, site)
» System (name and short description)

» Number of cores Salt Lake City,|hpc
Utah | matters.
» Performance (Rmax, Rpeak)
= Power
= Notes

= Performance in Tflops/s (10*? floating-point operations per second)
= Difference between max performance (Rmax) and Linpack result (Rpeak)
= Power measured in kW

39

» Sunway TaihuLight —

= Total: 40,960 CPUs - -
. SW26010 1111 1111 cemls“Jlﬂmemlm:ll 111
= 64bit RISC processors

= 256 cores per chip
= 64KB scratchpad H . 1l

LLTi it JI l".-_lpq.liﬂ
P e PR
[SEaE mae e
O B

u,
—
e
&

Storag tem

ongarra 40

O

Source: Report on the Sunway TaihuLight System by Jack

Top500 (#1 to #5)

S I

o Lcomey_oen__Jcows____Janox e o _

China Sunway 10,649,600 93,014.6 125,435.9 15,371
Taihulight

2 China Tianhe-2 3,120,000 33,862.7 54,902.4 17,808

3 United Titan 560,640 17,590.0 27,112.5 8,209
States

4 United Sequoia 1,572,864 17,173.2 20,132.7 7,890
States

5 United Cori 622,336 14,014.7 27,880.7 3,939

States

41

Top500 (#6 to #10)

S I

ok oy _spen oo _Lmnax et _rowr_

Japan Oakforest- 556,104 13,554.6 24,913.5 2,719
PACS
7 Japan K 705,024 10,510.0 11,280.4 12,660
8 Swiss Piz Daint 206,720 9,779.0 15,988.0 1,312
9 United Mira 786,432 8,586.6 10,066.3 3,945
States
10 United Trinity 301,056 8,100.9 11,078.9 4,233
States

Performance of over 10 Peta
S Y floating point number operations per second
e}
(10 Peta=l0.000,000.000,000_._0'00)

42

Top500 Analysis

S I

= First comments
= Ability to reach almost 100 Pflops
10'7 floating-point operations per second
= Machines with lot of cores
= Power consumption up to 17 Mwatts
= Top 10 exhibits different system architectures

= Deeper analysis
= Big difference between Rmax and Rpeak
= Big difference between Rmax and Power

= Ordering based on power efficiency : Green500

= Sort supercomputers according to the ratio power consumption /
Linpack performance

43

Green500

S I

N T T

DGX SaturnV 60,512 3,307 4,896.5 9,462.09
2 8 Piz Daint 206,720 9,779 15,988 7,453.51
3 116 Shoubu 1,313,280 1,001 1,533.5 6,673.84
4 1 Sunway 10,649,600 93,014.6 125,435.9 6,051.3
TaihuLight
5 375 QPACE3 18,432 447.1 766.8 5,806.32

DGX SATURNV

<A NVIDIA

44

Green500 Analysis

77

= Main ordering

= First machine is not the most powerful
Rank in Top500

= Large difference between first and second machine: 27%

=

= Specific architecture seems to be more efficient

= Top500 and Green500 limits
= Linpackis a very specific benchmark
= Regular computation (mainly linear algebra)
= Few communications/synchronization between parallel units

» Need different benchmarks to classify supercomputers
= Most powerful machines on irregular codes: Graph500

= Based on graph traversal
= GTEPS: Billions of edges traversed per second se

OO N N i L R

2

1

Graph500

82,944
Sunway 40,768
TaihuLight
Sequoia 98,304
Mira 49,152
JUQUEEN 16,384

663,552
105,9968 40
0

157,2864 41
786,432 40
262,144 38

=
Ll
T
>
S
)
=
e |

o

38,621.4
23,755.7

23,751
14,982
5,848

46

Conclusion on Ranking

S I

= Multiple ranking methods
= Correspond to various needs
= Highlight different architectures

= Where do the differences come from?
= Various domains of applications
= Depends on the target users
= Impact on the design choices

= Difference machine architectures
Processors, memory, network...

= How did we end up with such current lists?
= A little bit of HPC/architecture history...

47

HPC History

—7

= CDC 6600

= Builtin 1964

= Contain a single CPU
= Cost: S8 Million

= Frequency: 40 MHz

= Freon cooling

» Performance
= 3 Mflops

48

source: Extreme Tech

HPC History

—-,,

» Cray 1l
= Builtin 1976

= Designed by
Seymour Cray

= Cost: S5 - S8 million
= Frequency: 80 MHz

= Freon cooling

= Performance
» 136 Mflops

49

source: Extreme Tech

HPC History

77

» Cray XMP

= Builtin 1982

= Upto4 CPUs

= Frequency: 105Mhz
= Cost: $15 million

» Performance

= 200 Mflops per CPU
= 800 Mflops total!

50

source: Extreme Tech

HPC History

—7

= ASCI Red
= Build in 1997
= 6,000 CPUs

= Intel Pentium Pros
Regular processors

= Frequency: 200Mhz
= Cost: $S46 million

= Performance
= >1Tflops

= First one!

51

source: Extreme Tech

HPC History

77

» IBM Roadrunner

= Builtin 2008

= Hybrid
ADM Opteron
IBM PowerPC

= Frequency:
1.8GHz & 3.2GHz

= Cost: S100 million

& ML -

LN Ty e oy
¢ ’ 11l
| I

-

- A <

=
-
o«
s

» Performance

= >1Pflops
= First onel!

52
source: Wikipedia

—7

French Status

= Top500: 4th country w/ 20 systems

= 4% of systems

o st _spen s _Jimex o _Lrowe

50

51

55

64

= 3.8% of global performance

Total

Meteo
France

Meteo
France

CEA

CINES

Pangea (SGl)
Prolix2 (BULL)

220,800
72,000

Beaufix2 (BULL) 73,440

Tera-1000-1
(BULL)

Occigen (BULL)

70;272

50,544

5,283.1
2,168.0

2,157.4

1;871.0

1,628.8

6,712.3
2,534.4

2,585.1

2586.0

2,102.6

4,150
830.4

830.2

1,042

934.8

=

53

French Ecosystem

77

= leratec

=

= European pole of competence in high performance simulation
= Technology, research, dissemination /- \

. Teachi i Ter@tec ~.
Teaching & training \)@ o --
= Campus

= Group multiple companies & research labs Exascaleoco

= Located in Bruyeres-le-Chatel (close to CEA)

= InHP@CT seminars

= Exascale Computing Research (Intel/CEA/UVSQ) I
http://inhpact.hpcframework.com/

NHR@CI

= Forum organized each year 7 Forum
= June 19 & 20, 2018 @ Ecole Polytechnique \Teratec

= Presentations & Exhibition 2017305 2

54

http://inhpact.hpcframework.com/
http://inhpact.hpcframework.com/
http://inhpact.hpcframework.com/

French Ecosystem

S I

= Main French Vendor:
= Bull Atos

atos technologies

= Inside Top500

= 7th vendors
= 20 systems (4%)
= 3.6% of global performance

= Co-design with CEA

55

French Vision: Bull & CEA

77

» Co-design between Atos Bull & CEA

=

= Multiple machines inside Top500 made by BULL and hosted by
CEA

= HPC at CEA
= Mainly CEA/DAM (Bruyeres-le-Chatel)
= Different product lines

56

TERA

—7

» Part of defense simulation program

= History

= Program started in 1996
= Predicted to set up 3 machines

= First machine: Tera 1 (HP/COMPAQ)

= 2,560 cores (Alpha CPU, 1 GHz)
= Quadrics interconnect

= Linpack performance: 3.18 Tflop/s
= Rank 4 in June 2002

» Second machine: Tera 10 (BULL)
= 8,704 cores (Intel Itanium 2, 1.6GHz)
» Quadrics interconnect

= Linpack performance: 42.9 Tflop/s
= Rank 5 inJune 2006 57

Current TERA Machine

7
= Tera 100 (Bull)
= 140,000 cores (Intel Xeon Nehalem)
= 4,300 compute nodes
= IB QDR interconnect

= Linpack performance: 1,050 TFlop/s
= Rank 6 in November 2010

= Next steps
= Tera 1000

58

CCRT

77

= Research and Technology Computing Center
= Centre de calcul pour la recherche et la technologie

= French consortium

= Started in 2003 ;;;E CCr\U

= Based on french academic & industry

= Goals

= Provide High Performance Computing resources for large scientific
computations

= Foster a real synergy between research organizations, universities and
industry

= Promote exchanges and scientific collaboration between partners.

59

Current CCRT machine

—7

= Cobalt (Bull)

= Total: 39,816 compute cores (Intel Xeon Broadwell)

=

= Node w/ dual-socket (28 cores per node)
= |B EDR interconnect
= Rank 63 inJune 2016
= 1.299 Pflops

60

PRACE

= Partnership for Advanced Computing in Europe
= European Consortium

= 25 member countries

= 5 PRACE centers
= BSC (Spain)
= CINECA (ltaly)
= CSCS (Switzerland)
= GCS (Germany)
= GENCI (France)

= Currently
= French machine Curie
= Located in TGCC (Bruyéres-le-Chatel)

61

Current Status

77

= Computational power of supercomputer increases
= How is it possible?
= Is it specific to HPC?

=

= What are the main evolutions for the future?

» Need to understand the main parts to exploit such machines

= A little bit of hardware architecture...

62

HARDWARE CHALLENGES
T ———————]

Hardware Challenges

77

» Conclusion from hardware presentation
= Processors are building blocks of clusters
= But one processor = cores + complex mechanisms

= Clusters are made of many other components that are crucial for
overall performance

=

= List of major components
= Processors
= Memory
= Mother boards & nodes

» What are the challenges related to these components?

64

Processor Challenges

77

= Main trends

» Increase number of cores

=

= Larger compute units
» General purpose or dedicated

» Increase in the number of cores

= Per processor
= Per nodes

= Evolution of compute units

= Less microarchitectural mechanisms
= Larger vector units

= General purpose or dedicated

= Regular Intel Xeon multicore processors
» Intel Xeon Phi processors

= NVIDIA GPGPU
65

Memory Subsystem Challenges
_-,,

» Extended memory levels

=

= Evolution of caches

= Still some private caches
= May include scratchpad
= Shared caches = mesh-based coherency

= New memory levels

High-Bandwidth Memory (HBM)
Non-volatile memory (NVM)

66

Number of nodes

77

= Main trend

» Include challenges from processors and memory

=

= Increase in number of nodes

= Impacts

» Put the stress on network card (NIC)
Need to handle communication with more neighbors

= Imply new design for switches
Need to organize the network in specific topology (e.g., fat tree)

67

PARALLEL COMPUTING
S ——————————

Parallel Computing

77

= Tentative definition

= Ability to exploit multiple compute units at the same time
to solve a problem

= Involve various domains

= Vehicule security, performance

= Chemistry (molecule interaction/reaction)
= Bio-informatics

= Energy

= Weather forecast

69

Definitions

77

= Task
= Work to do

= Thread
» Implementation of a task: logical sequence of sequential actions
result of the execution of a program
= Process

= Instance of a program. A process consists of one or more threads that
share a common address space. If a process has multiple threads, it is
said to be multithreaded.

= Parallel computing

= Parallel computing consists of splitting a program in several tasks that
can be executed at the same time on independent computing
resources to reduce execution time/compute larger problems/try
multiple solutions

=

70

What is Parallelism?

S I

» Old idea to solve a problem more quickly and costly in time
calculation

= One solution: to use several processing units (e.g. processors)

= Difficulty: organization of parallel tasks (parallel algorithmic):
= solve the initial problem correctly: dependencies between tasks

= the processing units must have constantly (useful) work to perform:
distribution and (dynamic) load balancing

/1

Sequential programming

77

= ORDERED suite of instructions to run to resolve the initial
problem

=

= Sequential semantics: any instruction can only begin when the
previous one is completed and its result available

= FIXED ORDER in the execution of all instructions

= Regardless of tasks dependencies

72

Parallel programming

77

= Several execution flows (instructions + data)

=

» Several instructions executed simultaneously

= Multiple processors (or cores)

» Highlights the actual dependencies between statements:

= the task T2 depends on the task T1 iff T2 needs the result of T1 (a
correct result)

» If T2 does not depend on T1 and T1 does not depend on T2, then T1
and T2 are independent tasks

= =>» Two independent tasks can be executed in any order, or even
simultaneously (e.g. in parallel)

73

Dependency graph

77

= Dependency graph: highlights dependency relationships between tasks to
complete an action

=

" Tl > T2 means that T2 depends on T1;

= Depth of graph gives dependency
= Width of graph gives independency (parallelism) ;
» Sequential programming: dependency n and parallelism 1

TO ;T1I—>...—>Ti_1 =T' > Ti+1'—>...—>Tn

= Ex parallel programming with 10 tasks: dependency 6 and parallelism 2

T4/ Ty 1T,

\ 4

\ 4

Ty

\ 4
\ 4

T Ts

74

Concurrence

77

= Parallel tasks are executed:

= simultaneously :

= or alternately (e.g. a task can be stopped to execute another one, then
its execution is resumed) ;

= oOr both;

=

= =P Issue : tasks may access and modify common data (need
critical section);

= = Solution : need to find mecanisms to ensure data
coherency : locks and mutex (mutual exclusion)

75

Communication

77

» Communication and synchronisation :

= To ensure the consistency of a calculation, parallel tasks can have a «
meeting point » before resuming their execution

» These « meeting points » are called synchronisation :

= If the synchronisation concerns all parallel tasks
Global or collective synchronisation

= If the tasks have different addressing space
Communications

» Communications
= Global synchronisation => global or collective communication
= synchronisation between 2 tasks => point-to-point communication

76

Parallelism types

S I

= What are the sources of parallelism in an
application?

= 3 sources :

= Control parallelism (tasks)
= Flow parallelism (pipeline)
» Data parallelism

77

Control parallelism

77

= ldea: « Do several things simultaneously »

=

= Simple constatation :
= An application is composed of tasks that can run simultaneously
= Example : the execution of a kitchen recipe with several cooks

= Exploitation of control parallelism consists in managing the dependencies
between an application tasks in order to obtain an allocation of
computation resources as optimal as possible

= Extraction of this parallelism from the dependency graph: width of the graph

= In practice, the degree of parallelism is low and often complex to set up
(ex : ILP dans les processeurs)

= Fits to the following parallel programming models:

= MIMD (Multiple Instruction Multiple Data)

= MPMD (Multiple Program Multiple Data) : Processors run different programs
with their own data

78

Flow parallelism

77

= ldea: " Chainwork"”

= Work like a Pipeline

= A series of operations are applied on a data stream, generally composed of
similar data

= The computing resources are associated with the actions and linked so that
the results of the actions performed at time T are passed at time T + 1 to the
next computing resource

= Example : vectorial machine

= Degree of parallelism depends on pipeline depth (number of stages)
= Working on vectorial data:
= Vectors must be long enough to minimise on the cost of filling the pipeline

= Data flow muste be as contiguous as possible (every stop empties the
pipeline)

—»IF—»H-ID =

EX —{—~MEM—

v
v

WB—

v

v

— IF ID — EX —{—ME |:|-WB—>

79

Data parallelism

77

= ldea: « Repeat actions on similar data«

=

= Share the data and not the tasks
= example : several kitchen clerks pealing a bunch of potatoes

= Degree of parallelism potentially very high, depending on the
amount of data

= Fits the parallel programming model: SPMD (Single Program
Multiple Data)
= All processors run the same program with their own data
= Viable for a large number of data

= Very effective for many intensive computing algorithms (scientific
computation, animated films): afterwards, we will focus on this
programming model 80

Parallel programming paradigm

S I

= Independently of the hardware architectures of the machines,
two parallel programming models emerge:

= distributed memory programming model
= shared memory programming model

» Intheory, each model can be implemented on any type of
architecture with collateral effects of varying performance

81

distributed memory prog. model
5 Il

= Conditions :

= the parallel tasks work on separate memories, invisible from one
another

= the data (tables, etc ...) are split (called distributed data) on the
various parallel tasks

» Consequence: to ensure the accuracy of the final result, inter-
task communication becomes mandatory

= This is called programming by message passing

= Fits the SPMD model

82

distributed memory prog. model

S I

» Implementation on distributed-memory architecture
= Easy because it is the same principle

= on adistributed memory machine, processes that have their own

address spaces must send messages over the network to exchange
information

» Implementation on shared-memory architecture
= Is not more difficult:

through multiple processes using the shared memory segments for
communications

Through a multithreaded process using its memory to exchange
information between threads

83

distributed memory prog. model
5 Il

= Encapsulation of message exchanges, implemented
by libraries, such as:

= PVM (Parallel Virtual Machine) : one of the first portable
library of message passing

= MPI (Message Passing Interface) : the actual de-facto
standard, coming from the collaborations of industrial
partners and universities

This cours is dedicated to this programming interface

= RMA: Remote Memory Access

84

shared memory prog. model

77

= Condition:
= Parallel tasks are sharing the same address space

= Consequence:

= Need to properly handle concurrent access to the same data (critical
sections)

= Despite the apparent simplicity of programming, performance

can be quickly degraded because:

= Critical sections are not parallel (by definition)
= Data locality and memory hierarchy are transparent to the user

=

85

shared memory prog. model

S I

= Implementation on distributed-memory architecture
= difficult : how to « see » the whole memory ?

= DSM (Distributed Shared Memory) : software mecanism allowing to
simulate a unified memory on top of a physically distributed memory

= May be very inneficient because the cost of distant accesses is hidden

= Implementation on shared-memory architecture
= Easy because it is the same principle

» In a multithreaded process, every thread can access the process
memory (which can address the whole memory on the node)

86

shared memory prog. model

77

= API POSIX pthread :

= Normalised manipulation (POSIX) of threads in a process
= Fit the MPMD model

=

= OpenMP :

= Thread manipulation by directives

» At the present time, tools implementing the shared memory
model offer a great deal of thought so that applications can

make the best use of multicore processors
= TBB, Cilk++, ABB, ...

87

Hybrid memory prog. model

S I

» Combine both distributed and shared memory programming
models

= Explicit hybrid programming:
» Explicitely use multiple programming models for distributed and
shared memory paradigm
= MPI+X (X= OpenMP, Pthreads, TBB, ...)

» Implicit programming model
= Programming models working on a unified view of the memory
PGAS: Partitioned Global Address Space

= Software to simulate a unified memory
DSM: Distributed Shared Memory

88

Heterogeneous prog. model

S I

» Programmation on accelerator(s) attached to the node
= GPUs, Intel Knights Corner/Landing, Specialized cards

= Specific programming language
= Ex: CUDA for Nvidia GPUs, Intel LEO for KNL

» Can also use generic programming models

= C, C++, etc... for Intel KNL
= OpenMP accelerator directives for Intel KNL, Nvidia...

89

Parallelism benefit in cluster

77

= Distributed memory programming model
= Allows to work on all nodes of a supercomputer
= Parallelism potential benefits: tens (or hundreds) of thousands nodes

= Shared memory programming model
= Allows to work on all cores/hyperthreads of a node
= Parallelism potential benefits: up to 288 hyperthreads on an Intel KNL

= \Vectorization
= Allows to use all computational resources in one instruction

= Parallelism potential benefits (depends on architecture vector length):
up to 16 doubles / 32 simples

90

OUTLINE OF THE COURSE
Tl ———

MPI: Message Passing Interface

S I

= Lecture 1:
= MPI basic principles
= Point-to-point communications

= Lecture 2:
= MPI collective communications

= Lecture 3:
= Manipulation of MPI structures

= Lecture 4.
= Advanced collective communications

= Lecture5:
= MPI Remote Memory Access

= Lecture 6:
= MPII/O

= Lecture 7:

= MPI Forum and MPI Future Features
= Introduction to High Speed Network

92

