G AVAW D!
-...Vs\vn.-.ll.l
VAN /ISR

W L L)

..- SV D
"4?2\?.\:-:‘-:‘

G AVAW D!
-...Vs\vn.-.ll.l
VAN /ISR

W L L)

..- SV D
"4?2\?.\:-:‘-:‘

PARALLEL PROGRAMMING
Il

Message Exchange

77

= Message characteristics
= Sender
= Destination task
» Data to exchange

=

= High-level protocol
= Pair of actions will resolve message exchange

= Sender must send the message
Let’s consider a function called send

= Recipient must receive the message
Let’s consider a function called recv

Main Principle

S I

» Two parallel tasks TOet T1
= Distinct memory space
» Each task has its own instructions to execute

TO Task T1 Task

instructionl; instructionl;
instruction2; instruction2;

Main Principle

—7

=

= T1dependsonTO
= TOmustsenddatatoT1
= Data are located in adr_send with nb_elt elements

TO Task T1 Task
instructionl; instructionl;
instruction2; instruction2;

send(adr_send, nb_elt, T1);

A

llllll
llllll

llllll
llllll

||||||
IIIIII
||||||
||||||
llllll
llllll
llllll
llllll
llllll

Main Principle
_-,,

=

Recipient may have to allocate a memory zone to get the received data
(zone pointed by adr_recv)

TO Task

= T1 must receive data from TO (recv)
= Size of message nb_elt should be known by recipient

T1 Task

instructionl;
instruction2;
send(adr_send, nb_elt, T1);

instructionl;
instruction2;

N recv(adr_recv, nb_elt, TO);
CT T adr_recy

= | S A

[T I e e e

o | e

[SSU IR e e
|||||| >
|||||||||||| o
P £

" IIIIII
\ A 4

Main Principle
_-,,

=

= Communication

= Send blocks TO until data are sent
= recv blocks T1 until data are received

TO Task T1 Task

instructionl;
instruction2;
send(adr_send, nb_elt, T1);

instructionl;
instruction2;

recv(adr_recv, nb_elt, TO);

||||||
IIIIII
||||||
||||||
IIIIII
||||||
llllll
llllll
llllll

19 qu

Main Principle
_-,,

=

= Communication

= Send blocks TO until data are sent
= recv blocks T1 until data are received

TO Task T1 Task

instructionl;
instruction2;
send(adr_send, nb_elt, T

instructionl;

instruction2;
1);

. 2drses recv(adr_recv, nb_elt, TO);
SO adr_recv

= | [T T TTT A

O | Ty N A D | T

Ql :I:I:I:I:I:I I:I:I:I:I:I

[SSU R o e s e e | N A WVS Y/ |

N -
||||||
IIIIII
IIIIII
llllll
llllll
llllll

3 qu

Main Principle

—7

=

= T1owns acomplete copy of data sent by TO

TO Task T1 Task
instructionl; instructionl;
instruction?2; instruction2;
send(adr_send, nb_elt, T1);
4 Arsend recv(adr_recv, nb_elt, TO);
e adr_recv
S, | P || e
o | e O
| V== { | BEErrIa
O o | &
C o |
v EEEEDD T
lllllllllll

10

Main Principle

—7

=

= Tasks TO and T1 may continue their execution

= Following instructions of T1 may access to data stored at address
adr_recv
Tache TO Tache T1
instructionl; instructionl;
instruction2; instruction2;
send(adr_send, nb_elt, T1);
N recv(adr_recv, nb_elt, TO);
LT adr_recv
o | == T
mo | S
" llll[l[lllll ::i:::::::: —+
,,,,,,,,,,,
instruction3; instruction3;

11

Example

S I

= Parallel sum on each element of an array

= Hypothesis
= Array t with N floats (N is even)

= Array tis distributed across 2 tasks TO and T1
Parallelism type: data

= Goal
#= T1 must print the sum of each element of t

= Code?

12

Example

S I

TO sends its partial sumto T1 T1 needs partial sum from TO

TO T1
_nN- double p = 0.0;
.dogble p=0.0; double s;
inti; int i;
for(i=0;i<N/2 ; i++) for(i=0;i<N/2; i++)
p += tabli]; p += tabli;

recv(&s, 1, TO);
send(&p, 1, T1);

printf("%g",s+p);

13

Send/Recv Matching

S I

= Every send corresponds to one recv (and vice-versa)

= Model with an oriented graph
= Vertices are tasks
= Edges are communications

TO sends to T1 and
TO T1 r:(?e?lvsesofroma% > Tl

Communication Graph

= A missing send or receive action lead to a deadlock situation

T1

Waits nothing
from TO

TO TO sends to T1 > X

14

INTRODUCTION TO MPI

Introduction

77

» MPI: Message-Passing Interface

=

= High-level APl (Application Programming Interface)
= Parallel programming
= Distributed-memory paradigm

= Implementation as a library
= Interface through functions

= Language compatibility
= C
= C++
= FORTRAN

16

Pourquoi utiliser MP| ?

S I

= MPIis mostmy an interface
= MPI is available in every type of parallel architectures

= MPI supports heavy parallelism

= Machine and/or network vendors often provides their own
optimized version of MPI library

= MPIlis also available in open source for most of current
supercomputer architectures
= MPICH2 : http://www.mcs.anl.gov/research/projects/mpich2/
= OpenMPI : http://www.open-mpi.org

17

MPI| Overview

77

» MPlincludes (mainly MPI 1)
» Execution environment
» Point-to-point communication
= Collective communications
= Groups and topologies of MPI processes

=

= MPI 2.0 adds

» One-sided communications
= Dynamic process creation
» Multithreading

» Parallel |/O

= MPI 3.0 adds
= Non-blocking collective communications
= New one-sided communications
= Non-blocking I/0 collective
= Neighborhood collectives

18

Hello World!

#include <stdio.h> e Header file

/* MPI function signatures */))
J — Need to include it

— Contains signatures of each
int main(int argc, char **argv) available MPI function

{ — Function bodies are located

inside a library
/* Initialization of MPI */

* Syntax

printf ("Hello World!\n"); — All functions related to MPI

start with MPI
/* Finalization of MPI */ -

return 0; e (Convention

— No MPI calls before MPI Init

— No MPI calls after
MPI_Finalize

Compilation

77

= Basically
= Compilation process like any other library

=

= But multiple ways to compile an MPI program
= Simple way: rely on mpicc script

= Complex way: launch regular compiler with options to specify paths to
the library

= Simple way
= Script/program that hide the library configuration details
mpicc -0 hello hello.c

» Call the default underlying compiler
Possible to change the compiler that will be invoked

20

Compilation

—7

= Complex way
» Without the script = pass right options for library
= configuration
= Generic mandatory options to use external library
= Directory where header files are located (e.g., mp1i . h)
= Directory where library files are located (e.g., Libmpi . so)
= Name of the library to use (l/inker)

=

= Example: 1ibc library or MPI library

gcc —I/dir/mpi/include —o hello hello.c —L/dir/mpi/lib -Impi

21

Execution w/ Job Manager

77

» Slurm can spawn MPI processes

= Rely on srun command
= If not available

= Useofmpirun script (different syntax and usage)

=

Hello World!
Hello World!
Hello World!
Hello World!

srun -n 4 ./hello

= Remarks

= Creation of 4 processes

= Every process has the same instructions
= Processes are independent for execution

22

Communicator

4 ./hello

#include <stdio.h>
#include <mpi.h>

int main(int argc, char **argv){
MPI_Init(&argc, &argv);
printf("Hello !\n");

MPI_Finalize();
return 0;

#include <stdio.h>
#include <mpi.h>

int main(int argc, char *

MPI_Init(&argc, &argv);
printf("Hello !\n");

MPI_Finalize();
return 0;

#include <stdio.h>
#include <mpi.h>

int main(int argc, char *

MPI_Init(&argc, &argv);
printf("Hello !\n");

MPI_Finalize();
return 0;

#include <stdio.h>
#include <mpi.h>

int main(int argc, char **argv){
MPI_Init(&argc, &argv);
printf("Hello !\n");

MPI_Finalize();
return 0;

Group of processes form a communicator
» Predefined: MPI COMM WORLD w/ all processes

Communicator = set of processes + communication context
= Type:MPI Comm

23

Total Number of Processes

S I

% srun -n 4 ./a.out
Number of processes =
Number of processes =
int main(int argc, char **argv) { Number of processes =
Number of processes =
%

#include <stdio.h>
#include <mpi.h>

~ b~ B~ b

int N;
MPI_Init(&argc, &argv);

MPI_Comm_size (MPI_COMM_WORLD, &N);
printf("Number of processes = %d\n", N);

MPI_Finalize(Q);
return 0;

int MPI Comm size(MPI Comm comm, int *size);

s Return size of communicator comm in *size

s Ifcomm == MPI COMM WORLD, MPI Comm size returnsthe total number of

MPI processes in the application -y

Process Rank

srun —-n 4 ./hello

#include <stdio.h> #include <stdio.h> #include <stdio.h> #include <stdio.h>
#include <mpi.h> #include <mpi.h> #include <mpi.h> #include <mpi.h>

int main(int argc, char **argv){
MPI_Init(&argc, &argv);

printf("Hello !'\n");

int main(int argc, char **argv){
MPI_Init(&argc, &argv);

printf("Hello !\n");

int main(int argc, char **argv){
MPI_Init(&argc, &argv);

printf("Hello !\n");

int main(int argc, char **argv){
MPI_Init(&argc, &argv);

printf("Hello !\n");

MPI_Finalize(); MPI_Finalize(); MPI_Finalize(); MPI_Finalize();
return 0; return 0; return 0; return 0;

= Inside a communicator, MPI assigns rank from O to size-1
= This is the rank of a process

= FunctionMPI Comm rank returns the rank in the communicator comm
inside the address *rank:

int MPI Comm rank (MPI Comm comm, int *rank);

25

Process Rank

77

=

#include <stdio.h>
#include <mpi.h>

int main(int argc, char **argv) {

int N, me;
MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &N);
MPI_Comm_rank(MPI_COMM_WORLD, &me);

printf("My rank is %d out of %d\n", me,

MPI_Finalize();
return 0;

N);

% srun

rank
rank
rank
rank

1s
1s
is
is

NWOR b~

./a.out

out
out
out
out

of 4
of 4
of 4
of 4

26

Process Rank

S I

= Number of processes may different from number of available
cores/processors!
= By default, Slurm binds one MPI process to one core
= Option —c can be used to book multiple cores per rank

= Execution of processes is not related to their rank

= Parallel execution
= At the beginning, no ordering between processes
» Only communications can imply some partial ordering

= Rank is usually used to determine
= Which part of data should | work on?
= What is my role (master/slave)?

27

MPI POINT-TO-POINT
COMMUNICATIONS

MPI Communication

77

= MPIlis a parallel distributed-memory model

= Each process accesses its own memory space

=

= Based on message passing

= What is the main interface for data exchange w/ MPI?

= To send a message
= MPI Send function

29

Sending Messages

.ﬂi’

= Function to send a message

=

int MPI_Send (

N
void *buf®,

] _ Main characteristics of
int countn, > message to send
MPI_Datatype datatypem,

J

int (i) |
int tagim,

MPI_Comm (in)
) ;

30

Sending Messages

a

= Function to send a message

int MPI_Send (
void *buf(m,

[P

int count(,

MPI_Datatype datatype(,
int (in),
int tagm,

MPI_Comm commn)

);

77

Sending Messages

MPI_Datatype

C Type

MPI_CHAR signed char
MPI_SHORT signed short 1int
MPI_INT signed int
MPI_LONG signed long int

MPI_UNSIGNED_CHAR

unsigned char

MPI_UNSIGNED_SHORT

unsigned short int

MPI_UNSIGNED

unsigned 1int

MPI_UNSIGNED_LONG

unsigned long 1int

MPI_FLOAT float

MPI_DOUBLE double
MPI_LONG_DOUBLE Tong double

MPI_BYTE One byte

MPI_PACKED Pack of non-contiguous data

=

32

Sending Messages

-'7’

[P

int MPI_Send (
void *buf i,

int countn,

MPI_Datatype datatype(,
int (in),
int tagm,

MPI_Comm (in)
) ;

33

Sending Messages

-'7’

[P

int MPI_Send (
void *buf i,

int countn,

MPI_Datatype datatype(,
int (in),
int tagm,

MPI_Comm (in)
) ;

34

Sending Messages

-'7’

[P

int MPI_Send (
void *buf i,

int countn,

MPI_Datatype datatype(,
int (in),
int tagm,

MPI_Comm (in)
) ;

35

Sending Messages

.'7’

[P

int MPI_Send (
void *buf i,

int count(,

MPI_Datatype datatype(,
int (in),
int tagm,

MPI_Comm
) ;

36

Remakes on Sending Messages

= MPI Sendis blocking function

= Returning from MPI Send, process can manipulate (e.g., write) the data
buffer containing thé message

= It doesn’t mean that
Message has been sent
Message has been received

= How to determine the message tag
= Can use any way you want
= Not necessary for different send/recipient pair
= Example:
tag = src * N + dest
N total number of MPI processes,

src sender rank,
dest recipient rank;

= Be careful: the number of tags is limited!

37

MPI Communication

—7

= What is the main interface for data exchange w/ MPI?

=

= Message reception
= MPI Recv function

38

Recelving Messages

.ﬂi’

int MPI_Recv (
void *bufuw

int countn,

=

> Main characteristics of message
to receive

MPI_Datatype datatype(™,)
int (in) |

int tagin,

MPI_Comm (i) |

MPI_Status *statusfou)
) ;)

Recelving Messages

a
1nt MPI_Recv (
void *bufuw

int count(n,

[P

MPI_Datatype data
int (in) ,

int tagim,
MPI_Comm (in) |

MPI_Status *status(u)
) ;

40

Recelving Messages

[P

-'7’

1nt MPI_Recv (
void *buflu,

int count(n,

MPI_Datatype datatype(,
int (in) |
int tagm,

MPI_Comm (in) |

MPI_Status *status(u)
); 41

Recelving Messages

.477

1nt MPI_Recv (
void *buflu,

int countm,

=

MPI_Datatype datatype(,

int (in)

int tagim,
MPI_Comm (in) |

MPI_Status *status(u)
); 4?2

Information and Status

—7

= MPI Statusisa Cstructure

=

struct MPI Status{
int MPI_SOURCE; /* message sender (useful w/ MPI_ANY_ SOURCE argument) */
int MPI_TAG; /* message tag (useful w/ MPI_ANY_TAG argument) */
int MPI_ERROR; /* error code */

= If message size is unknown to the recipient, it is possible to extract the
actual size with MPI Get count

int MPI Get count(
MPI_Status *status(in), /* status returned by MPI_Recv */
MPI_Datatype datatype(in), /* Type of elements in the message */
int *count(out) /* Size of the message (in number of elements of type datatype) */

);

43

Simple MPI Example

S I

int main(int argc, char **argv) {
double p = 0., sO;
int i, r;
MPI_Status status;

MPI_Init(&argc, &argv); /* Initialization of MPI [library */
MPI_Comm_rank (MPI_COMM_WORLD, &r); /* Get the rank of current rank */

for(i =0 ; i <N/2 ; i++)

p += tab[i];
tag = 1000; /* Message tag */
if (r == 0) {

MPI_Send(&p, 1, MPI_DOUBLE, 1, tag, MPI_COMM_WORLD);
} else {

MPI_Recv(&s0O, 1, MPI_DOUBLE, 0, tag, MPI_COMM_WORLD, &status);
printf("Sum = %d\n", sO+p);

}

MPI_Finalize();

return 0O;

44

Simple MPI Example

S I

sum = 0.; /% Each process has N/P elements of distributed */
forCi =0 ; i <N/P ; i++) /* array and perform a partial sum */
sum += tab[i];

if (r == 0) {
/* Process 0 receives P-1 messages in any order */
forCt=1; t<P; t++) {

MPI_ReCV(&S, 1, MPI_DOUBLE,
MPI_ANY_SOURCE, MPI_ANY_TAG, /* wildcards */
MPI_COMM_WORLD, &sta);

printf(« Message from rank %d\n", sta.MPI_SOURCE);

sum += s; /* Contribution of process sta.MPI_SOURCE to the global sum */
}

} else {

/% Other processes send their partial sum to rank 0 */
MPI_Send(&som, 1, MPI_DOUBLE, 0, rang, MPI_COMM_WORLD);

} 45

MESSAGE PASSING PROTOCOLS
T —————————————— |

Message protocols

= Message consists of “envelope” and data

= Envelope contains tag, communicator, length, source information, plus
impl. private data

= Short

= Message data (message for short) sent with envelope

= Eager
» Message sent assuming destination can store

= Rendezvous

= Message not sent until destination oks

Message Protocol Details

S I

= User versus system buffer space

= Packetization
= Collective operations

= Datatypes, particularly non-contiguous

» Handling of important special cases
Constant stride
Contiguous structures

Eager Protocol

Process O

Process 1

Y

Time

* Data delivered to process 1

— No matching receive may exist; process 1 must then buffer and
copy.

Eager Features

77

= Reduces synchronization delays

=

= Simplifies programming (just MPl_Send)
= Requires significant buffering

= May require active involvement of CPU to drain network at
receiver’s end

= May introduce additional copy (buffer to final destination)

How Scaleable is Eager Delivery?
= Il

= Buffering must be reserved for arbitrary senders

= User-model mismatch (often expect buffering allocated
entirely to “used” connections).

= Common approach in implementations is to provide same
buffering for all members of MPI_COMM_WORLD; this is
optimizing for non-scalable computations

= Scalable implementations that exploit message patterns are
possible

Rendezvous Protocol

S I

May | Send?
Process 1 Yes

Time >

= Envelope delivered first
= Data delivered when user-buffer available

= Only buffering of envelopes required

Rendezvous Features

S I

= Robust and safe

= (except for limit on the number of envelopes...)

= May remove copy (user to user direct)
= More complex programming (waits/tests)

= May introduce synchronization delays (waiting for receiver to
ok send)

Short Protocol

77

= Datais part of the envelope

=

= Otherwise like eager protocol

= May be performance optimization in interconnection system
for short messages, particularly for networks that send fixed-
length packets (or cache lines)

Special Protocols for DSM

77

= Message passing is a good way to use distributed shared
memory (DSM) machines because it provides a way to express
memory locality.

» Put
= Sender puts to destination memory (user or MPI buffer). Like Eager.

x QGet
= Receiver gets data from sender or MPI buffer. Like Rendezvous.

= Short, long, rendezvous versions of these

MPI POINT-TO-POINT
COMMUNICATIONS

Blocking Communications

77

= Definition

=

= A send is blocking if after performing send it is possible to
manipulate (read/write) the input data buffer without
corrupting the communication

= Meaning

= A blocking send will not return while the communication
library is not able to handle the message

57

Blocking Communications

77

TO
a = 100;
send(&a, 1, T1);
a = 0;

recv(&a, 1, T0);
printf("%d\n", a);

T1

= After send, TO may modify the value of a

= T1 will receive 100 (value of a as input of send by TO)

= Note

=

= Resolving a blocking send does not mean that the receiver has the

message

58

Blocking Communications

S I

» Definition

= Arecvis blocking if after performing recv the output buffer
contains the received message

» Meaning

= A blocking recv will not return while the message has not
been received and processed

59

Blocking Communications

S I

TO T1
a = 100; recv(&a, 1, T0);
send(&a, 1, T1); printf("%d\n", a);
a = 0;

= After send,
= TO may manipulate a and its content

= After recy,

= Content of output buffer (a in T1) can be manipulated
(read, write, print...) without concurrency issue

60

Blocking Communications

77

= MPI SendetMPI Recv are blocking

= MPI Sendreturns when data buffer can be manipulate
again by sender

= MPI Recv returns when the message arrived and has
been processed

= Issue?

= Be careful to deadlock situations!

61

Ring Topology

Ring example:
Processes pass one message in
Increasing rank value

'Iefj= (rank + Pe==d)=%=P;

right = (rank + 1) % P;
if (rank == 0)

m= 0;

/% Receiving from left-hand side */
MPI_Recv(&m, 1, MPI_INT, left, tagl, MPI_COMM_WORLD, &sta);

/% Sending to right-hand side */
MPI_Send(&m, 1, MPI_INT, right, tag2, MPI_COMM_WORLD);

1Py
Pp.1 P
! !

p
Nk

2

62

Ring Topology

leWN' = (rank + Pe—=l)=%-P; Ringgxample:]
righ§ = (rank + 1) % P; Prgesses pass one message in
if (ramg == 0) fMcreasing rank value

m = 0,
/% Receivind& from left-hand sidedr/
MPI_Recv (&n, MPI_INT, left, g#fagl, MPI_COMM_WORLD, &sta);

/% Sending to rMght-hand sigl */
MPI_Send(&m, 1, MANL_INT, pFght, tag2, MPI_COMM_WORLD);

(D, Each process P; waits a message
—/ N P from P, ; before sending itto P,_;.
P 7 1

To do so, P; , should send this
Y message, but P;, is blocked
P, because it wait for a message from

AV < I

Pi = deadlock

63

Communication Mode

77

=

» Multiple modes for blocking communications
1. Synchronous mode
2. Buffered mode
. Standard mode

64

Synchronous Mode

5 Il
» Definition

= A synchronous send will block while the message has not
been received by the recipient

» Implementation

= Require some sort of synchronization mechanism between
sender and recipient

= Design of a data-transfer protocol

65

Synchronous Mode

77

= Synchronous communication protocol

=

Sender Recipient
® For a synchronous send, sender transfer a
request to the receiver and waits for an answer
;- © send ® \When recipient starts the recwv function, it
request waits for a sender request
' @ send © When recipient has th ted t, it
% : © send request en recipient has the expected request, |
2\ [acknowledgmen 5 , recv answers with an acknowledgment message
O data transfer > O Sender and recipient are now synchronized
N 4) leading to a safe data transfer

66

Synchronous Mode

77

= Advantages
» No intermediate copy inside internal buffer
= May rely on optimized direct remote memory access (DMA or RDMA)

= Drawbacks

= Involve a remote synchronization (like rendez-vous) between the two
MPI processes

» May lead to idle overhead

= Optimal situation

= When sender and recipient calls the corresponding function at the
same time

= Possible in data parallelism when load is balanced between the two
MPI processes

67

MPI Synchronous Mode

int MPI_Ssend (« Same signature as
_ MPI_Send.
void *bufn,
 Receive with function

int countn, MPI_RecCv

=

MPI_Datatype datatype(,
int (in),

int tagin,

MPI_Comm (in)

);

68

Communication Mode

77

=

» Multiple modes for blocking communications
1. Synchronous mode
2. Buffered mode
. Standard mode

69

77

puas

Buffered Mode

=

Waits until message has been copied to internal buffer

Protocol:

Sender Reci

pient

1 | recv
© message
recegtidn

AMP.T

O Sender copies incoming message inside a
buffer (managed by the communication library).
Send function may return

® Communication library owns a copy of the
data to transfer and sends it to the recipient

© Recipient gets the message asap

70

Buffered Mode

S I

= Advantages

= Ability to decouple send and recv actions: send may return before
recipient calls recv function

= Drawbacks

» Intermediate data copy
CPU overhead
Memory consumption overhead
Memory bandwidth overhead

» Limited to an upper bound (buffer size)

= Optimal situations
= When send and recv functions are not posted at the same time

» Load is not balanced between MPI processes -

Buffer Allocation

S I

= User may provide its own buffer to replace the internal one.

= Function to attach user-allocated buffer buf of size sz bytes
int MPI Buffer attach(void *buf, int sz);

= Such buffer can be released and used again in the application
by the user
= Function to detach a user-allocated buffer
= Return the buffer start address and its size
int MPI Buffer detach(void **buf adr, int *sz);

72

Buffer Allocation

S I

#define BUFFSIZE 100000
int sz;
char *buf;

MPI_Buffer_attach(malloc(BUFFSIZE), BUFFSIZE);

MPI_Bsend(msgl,)]
MPI_Bsend(msg2, ..);
MPI_Buffer_detach(&buf, &sz);
free(buf);

» Onlyusedin MPI Bsend
= Only one buffer may be attached
= Only useful for sender

73

Communication Mode

77

=

» Multiple modes for blocking communications
1. Synchronous mode
». Buffered mode
. Standard mode

74

Standard Mode

77

» Function for standard communication
- MPI_Send

=

» Standard communication protocol

= MPIl includes an internal threshold T

If input message size is lower than T
» Switch to buffered mode

If input message size is larger than T
» Switch to synchronous mode

75

Standard Mode

77

if (rang == 0)
voisin = 1;

else if (rang == 1)
voisin = 0;

=

MPI_Send(&msgl, N, MPI_BYTE, voisin, tagl, comm);
MPI_Recv(&msg2, N, MPI_BYTE, voisin, tag2, comm);

= |s this code safe?

= NO
= If Nis small enough - OK
= If Nis too large - Deadlock

76

Standard Mode

77

= Hint to detect such issues
= Replace callstoMPI SendbyMPI Ssend

= Whatever the size of messages and scheduling, the applications
should not deadlock

=

= Deadlocks means application bug!

77

MPI POINT-TO-POINT
COMMUNICATIONS

Non-Blocking Communication

S B
= Definition

= A non-blocking communication has no guarantee when send function
returns!

= Meaning
= No safe access to input message when function send returns

= To be sure that message buffer can be reused, an additional function
should be called and returned

79

Non-Blocking Send MPI Isend

S o

int MPI_Isend (
void *buf(n,

int countln,

MPI_Datatype datatypel,
int (in),
int tagm,
MPI_Comm (i),

MPI_Request *requw
) ;

80

Check Function MPI Wait

.477

=

int MPI_wait (
MPI_Request *reqinou,

MPI_Status #*stalou)
);

MPI_wait blocks until communication represented by *req is done.

Detailed information about finished communication are store into *sta.

When MPI_wat returns
— *req is assigned to MPI_REQUEST_NULL (invalid request)
— Input message buffer can be safely manipulated by sender

Remark:
MPI_Send <« MPI_Isend +MPI_Wwait

81

Non-Blocking Example

77

Instructions
between

MPI_Isend and <
MPI_wait should

not write into buf.

MPI_Request req;
MPI_Status sta;

MPI_Isend(buf, N, MPI_BYTE,

dest, tagl, comm,
&req) ;

instructionl;
instruction?;

instructionN;

MPI_wait(&req, &sta); ’

In the meantime,
message progresses

= Advantages
= Recover communications and computation

82

Non-Blocking Communication

S I

1nt MPI_Test (

_ Write true (non-zero value) in
MPI_Request *req(inouw, *f1ag if request *req is over.
int *flaglw, If *flag is true, *req is assigned
to MPI_REQUEST_NULL and
MPI_Status *stalw *sta is filled.
) ’ If *f1ag is false, values of *req
and *sta are not guaranteed.

83

Non-Blocking Communication

77

= Example:

=

MPI_Irecv(msg, N, MPI_BYTE, dest, tag, comm, &req);
do {

instructionl;
instructionN;

MPI_Test(&req, &flag, &sta);
} while(!'flag);

84

Non-Blocking Communication

S I

int MPI_waitall (
int nb_req,
MPI_Request *tab_reqnou,

MPI_Status *tab_stalou
);

Return when nb_req requests located in array tab_req are completed.

Status of communications are available as output in array tab_sta.

Remark:
Order of communication completion is not important

85

Non-Blocking Communication

S I

= Example: send/receive with left/right neighbors

MPI_Request req[4];
MPI_Status stal[4];

left = (rang + P - 1) % P;
right = (rang + 1) % P;

MPI_Isend(&x[1], 1, MPI_DOUBLE, left, tag, comm, req);
MPI_Isend(&x[N], 1, MPI_DOUBLE, right, tag, comm, reqg+l);
MPI_Irecv(&x[0], 1, MPI_DOUBLE, left, tag, comm, req+2);
MPI_Irecv(&x[N+1], 1, MPI_DOUBLE, right, tag, comm, reqg+3);

MPI_waitall(4, req, sta);

86

Other Available Functions

S I

= MPI proposes multiple functions to complete non-blocking
communications

= MPI Testall
= Test is all requests as input are completed

= MPI Waitany/MPI Testany
= Wait/Test until at least one request is completed
= Return index of completed request

= MPI Waitsome/MPI Testsome
= Wait/Test until at least one request is completed
= Return set of completed requests

87

Communications and modes

S I

= Non-blocking communication is different from
asynchronous

= Non-blocking communications can be done in different
modes: synchronous, buffered or regular

Type/Mode | Standard | Buffered Synchronous | Receive

Blocking MPI_Send | MPI_Bsend |MPI_Ssend MPI_recv

Non- MPI_Isend | MPI_Ibsend | MPI_Issend MPI_Irecv
Blocking

88

P2P comm # Protocols

77

=

= Eager not Bsend or Rsend, rendezvous not Ssend
resp., but related

» Each Point-to-point communications is ultimately
implemented with the three protocols

89

CHECKING INCOMING MESSAGES
Sl S—————————————]

Checking Incoming Messages

S I

= How to receive a message without knowing the actual final
size?

= MPI Recv function requires an upper bound on incoming messages
MPI Recv is not appropriate if the message size is unknown

= MPI proposes function to retrieve information on incoming messages

before performing the receive actions: MPI Iprobe and
MPI Probe

91

Checking Incoming Messages

.477

1nt MPI_Probe (

=

int source(,

int tagin,

Wait for a message coming from sender

in source with label tag has arrived
MPI_Comm comm()’ (MPI_ANY_SOURCE and

int * (out) MPI_ANY_TAG are allowed).

) ’ Upon return, status is written in *
)

92

Checking Incoming Messages

.477

1nt MPI_Iprobe (

=

int sourcelm,

Check if a mesage coming from source

int tagim, with label tag has arrived
(MPI_ANY_SOURCE and

MPI_Comm commim MPI_ANY_TAG are allowed).

int * (out) | Return true (non-zero value) in *

such a message exists.

MPI_Status * (W o

) . In such case, status of incoming message
) Is provided in *

93

Receiving messages after

MPT IErobeZMPI Probe
= 2

s CallstoMPI IprobeandMPI Probe checks
incoming messages or wait for a specific message to
come.

= But they do not perform the actual reception

= Toreceive the target message:
1. CallMPI Get count to getthe message size
>. Allocate a buffer corresponding to this size
. CallMPI Recv to receive the message

94

Receiving messages after

MPT IErobeZMPI Probe
= 2

MPI_Status sta;
int size, done;
do {
instructionl;

instructionN;
MPI_Iprobe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &done, &sta);

} while (!done);

MPI_Get_count(&sta, MPI_BYTE, &size);

char *buf = malloc(size);

MPI_Recv(buf, size, MPI_BYTE, sta.MPI_SOURCE, sta.MPI_TAG,
MPI_COMM_WORLD, &sta);

95

