
ENSIIE-HPC/BigData

Programmation Parallèle
MPI: Message Passing Interface

Manipulating MPI structures

ENSIIE-HPC/BigData-PP-IIP-Lecture 3

MPI PROCESS

“MPI process” is a term defined and used in the MPI API

In the MPI standard, an MPI Process IS NOT an OS process
You may implement it with a thread

MPI process basically just means “MPI rank”
with a context local to the MPI rank

4

MPI Process

COMMUNICATORS

A communicator encapsulates the following concepts:
Contexts of communication,

Groups of processes,

Virtual topologies,

Attribute caching,

Context provides the ability to have separate safe “universes”
of message-passing in MPI.

Different libraries working on different communicators will not
interact with each other, at MPI runtime level

They will still use the same network and may impact the other library
message passing performance

6

Communicators

Group of processes defines an ordered collection of
processes, each with a rank

The group defines a scope for process names in communications

A rank number is only valid in the corresponding communicator

An MPI process may have different rank number per communicator

Virtual topology
To be discussed in Lecture 4

Attributes define the local information that the user or library
has added to a communicator for later reference.

Ex: hints for algorithm to use, not using user-defined data type…

7

Communicators

First function to manipulate communicators duplication

Prototype:
int MPI_Comm_dup(MPI_Comm comm,

MPI_Comm *newcomm)

Useful when designing a library
Allow usage of same communicator

Avoid deadlock with pending communications

8

Duplication

Possibility to split a communicator into multiple subgroups

Prototype:
int MPI_Comm_split(MPI_Comm comm, int color,

int key, MPI_Comm *newcomm)

Effect
Create disjoint subgroups (one per color value)

Within a subgroup, process are ranked according to key value

Useful to adapt work and exploit different parallelism

9

Split

10

Split

MPI_COMM_WORLD

r1

r3

r4

r2

r0

MPI_Comm_split(
MPI_COMM_WORLD,
r%2, r, &c)

11

Split

MPI_COMM_WORLD

r1

r3

r4

r2

r0

MPI_Comm_split(
MPI_COMM_WORLD,
r%2, r, &c)

Create a new communicator from an old communicator and a
group

Prototype:
int MPI_Comm_create(MPI_Comm comm, MPI_Group

group, MPI_Comm *newcomm)

Group argument must be a valid subset of the old comm
group

Each process in comm must call the function

12

Creating Communicators

Exist a function to be called only from the processes to be
included in the new comm newcomm

Prototype:
int MPI_Comm_create_group(MPI_Comm comm, MPI_Group

group, int tag, MPI_Comm *newcomm)

Tag allows to identify MPI_Comm_create_group calls in a
multithreaded environment

Does not interfere with communication tags

13

Creating Communicators

Possibility to compare communicators

Prototype:
int MPI_Comm_compare(MPI_Comm comm1, MPI_Comm

comm2, int *result)

Result
MPI_IDENT: comm1 and comm2 are the same object (group, context)

MPI_CONGRUENT: same group with same rank order (not context)

MPI_SIMILAR: same groupe (not same rank order, not same context)

MPI_UNEQUAL

14

Comparing Communicators

What we discussed so far are intra-communicators (one
group, one context)

However, when an application is built by composing several
parallel modules, it is convenient to allow one module to
communicate with another using local ranks for addressing
within the second module.

Inter-communicators are defined to exchange messages
between multiple groups

15

Inter-communicators

Prototype:
int MPI_Intercomm_create(MPI_Comm local_comm, int

local_leader,MPI_Comm peer_comm, int

remote_leader, int tag, MPI_Comm *newintercomm)

Use two intra-comms to create an inter-comm

Processes should provide identical local_comm and
local_leader arguments within each group.

Collective call over the union of both groups

 16

Inter-communicators

Possible to merge the groups of an inter-communicator to create an
intra-communicator:
int MPI_Intercomm_merge(MPI_Comm intercomm, int high,

MPI_Comm *newintracomm)

High argument: fix the order in the new intra-comm of the ranks of
the two inter-comms

If high=true for all processes, arbitrary order

If high=false for group1 and high=true for group2, then ranks order will be
ranks from group1 then ranks from group2

Useful because some operations are not possible with inter-
communications

17

Inter-communicators

USER-DEFINED DATATYPES

Homogeneous blocks

Derived Datatypes

Communication mechanisms studied to this point
allow send/recv of a contiguous buffer of identical
elements of predefined datatypes.

Often want to send non-homogenous elements
(structure) or chunks that are not contiguous in
memory

MPI allows derived datatypes for this purpose.

Homogeneous block

MPI_Type_contiguous (int count,

MPI_Datatype oldtype, MPI_Datatype

*newtype)

IN count (replication count)

IN oldtype (base data type)

OUT newtype (handle to new data type)

Creates a new type which is simply a replication of
oldtype into contiguous locations

Committing a derived datatype

Every datatype constructor returns an uncommited datatype.
Think of commit process as a compilation of datatype
description into efficient internal form.

Must call MPI_Type_commit (&datatype).

Once committed, a datatype can be repeatedly reused.

If called more than once, subsequent call has no effect.

Freeing a derived datatype

Call to MPI_Type_free (&datatype) sets the value of datatype
to MPI_DATATYPE_NULL.

Not possible to use the derived datatype anymore

Datatypes that were derived from the defined datatype are
unaffected.

MPI_Type_contiguous example

/* create a type which describes a line of ghost cells */
/* buf[1..nxl] set to ghost cells */
int nxl;
MPI_Datatype ghosts;

MPI_Type_contiguous (nxl, MPI_DOUBLE, &ghosts);
MPI_Type_commit(&ghosts)
MPI_Send (buf, 1, ghosts, dest, tag, MPI_COMM_WORLD);
..
..
MPI_Type_free(&ghosts);

Spaced homogeneous blocks

MPI_Type_vector (int count, int blocklength, int

stride, MPI_Datatype oldtype, MPI_Datatype

*newtype);

IN count (number of blocks)

IN blocklength (number of elements per block)

IN stride (spacing between start of each block, measured
 in # elements)

IN oldtype (base datatype)

OUT newtype (handle to new type)

Allows replication of old type into locations of equally spaced
blocks. Each block consists of same number of copies of
oldtype with a stride that is multiple of extent of old type.

MPI_Type_vector example

MPI_Datatype mytype;

MPI_Type_vector (3, 4, 5, MPI_DOUBLE, &mytype);

MPI_Type_commit(&mytype);

oldtype = MPI_DOUBLE

blocklength = 4

count = 3

stride = 5

mytype :

Spaced homogeneous blocks

MPI_Type_create_hvector (int count, int

blocklength, MPI_Aint stride, MPI_Datatype old,

MPI_Datatype *new)

IN count (number of blocks)

IN blocklength (number of elements/block)

IN stride (number of bytes between start of each block)

IN old (old datatype)

OUT new (new datatype)

Same as MPI_Type_vector, except that stride is given in bytes
rather than in elements

h stands for heterogeneous.

USER-DEFINED DATATYPES

Heterogeneous blocks and types

Heteregeneous space and block
length

MPI_Type_indexed (int count, int

*array_of_blocklengths, int

*array_of_displacements, MPI_Datatype oldtype,

MPI_Datatype *newtype);

IN count (number of blocks)

IN array_of_blocklengths (number of elements/block)

IN array_of_displacements (displacement for each block, measured as
number of elements)

IN oldtype

OUT newtype

Displacements between successive blocks may not be equal.

Block lengths may not be equal.

MPI_Type_indexed example

int blocklength[3] = {2,3,1}

int displacement[3] = {0,3,8}

MPI_Datatype mytype;

MPI_Type_vector (3, &blocklength, &displacement, MPI_DOUBLE_2,
&mytype);

MPI_Type_commit(&mytype);

oldtype = MPI_DOUBLE_2

blocklength = 2,3,1

stride = 0,3,8

mytype :

Heteregeneous space and block
length

MPI_Type_create_hindexed (int count, int

*array_of_blocklengths, int

*array_of_displacements, MPI_Datatype oldtype,

MPI_Datatype *newtype);

IN count (number of blocks)

IN array_of_blocklengths (number of elements/block)

IN array_of_displacements (displacement for each block, measured as
number of elements)

IN oldtype

OUT newtype

Same as MPI_Type_indexed, except that stride is given in
bytes rather than in elements

Heteregeneous space

int MPI_Type_create_indexed_block(int count, int

blocklength, const int array_of_displacements[],

MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_create_hindexed_block(int count, int

blocklength, const MPI_Aint

array_of_displacements[], MPI_Datatype oldtype,

MPI_Datatype *newtype)

Same as MPI_Type_indexed and MPI_Type_create_hindexed
but with same size for all blocks

Still possible to have different spacing between blocks

Example: upper triangular transfer
[0][0] [0][1] Consecutive memory

Upper-triangular transfer

double a[100][100];
Int disp[100], blocklen[100], i, dest, tag;
MPI_Datatype upper;

/* compute start and size of each row */
for (i = 0; i < 100; ++i){
 disp[i] = 100*i + i;
 blocklen[i] = 100 – i;
}

MPI_Type_indexed(100, blocklen, disp, MPI_DOUBLE, &upper);
MPI_Type_commit(&upper);
MPI_Send(a, 1, upper, dest, tag, MPI_COMM_WORLD);

Fully heterogeneous type

MPI_Type_create_struct (int count, int

*array_of_blocklengths, MPI_Aint

*array_of_displacements, MPI_Datatype

*array_of_types, MPI_Datatype *newtype);

IN count (number of blocks)

IN array_of_blocklengths (number of elements in each block)

IN array_of_displacements (byte displacement of each block)

IN array_of_types (type of elements in each block)

OUT newtype

Most general type constructor.

Further generalizes MPI_Type_create_hindexed

Allows each block to consist of replications of different datatypes.

MPI_Type_create_struct example

MPI_Datatype types[3] = {DOUBLE, INT, SHORT}

int blocklength[3] = {2,2,5}

int displacement[3] = {0,14,26}

MPI_Datatype mytype;

MPI_Type_vector (3, &blocklength, &displacement, &types, &mytype);

MPI_Type_commit(&mytype);

oldtype = double, int, short

blocklength = 2,2,5

stride (bytes)= 0,14,26

mytype :

Example: struct of basic types

Struct Partstruct{
 char class;
 double d[6];
 char b[7];
}

Struct Partstruct particle[1000];
Int dest, tag;
MP_Comm comm;

MPI_Datatype particletype;
MPI_Datatype type[3] = {MPI_CHAR, MPI_DOUBLE, MPI_CHAR};
int blocklen[3] = {1, 6, 7};
MPI_Aint disp[3] = {0, sizeof(double), 7*sizeof(double)};

MPI_Type_create_struct(3, blocklen, disp, type, &Particletype);
MPI_Type_commit(&Particletype);
MPI_Send(particle, 1000, Particletype, dest, tag, comm);

Subarray

MPI_Type_create_subarray(int ndims, int

array_of_sizes[], int array_of_subsizes[], int

array_of_starts[], int order, MPI_Datatype

oldtype, MPI_Datatype *newtype);

IN ndims (number of dimensions of the array)

IN array_of_sizes (sizes for each dimension of original array)

IN array_of_subsizes (sizes for each dimension of subarray)

IN order (type of order, C or FORTRAN, row major or column major)

IN oldtype (type of element of the original array)

OUT newtype

Exists other derived datatypes creatin function targeting arrays

Ex: MPI_Type_create_subarray

Build a datatype to capture subarray(s) in a linearized multi-dimensionnal
array

MPI_Type_create_subarray example

MPI_Datatype subarray3x2;
int array_of_sizes[2] = {5,4};
int array_of_subsizes[2] = {3,2};
int arrays_of_starts[2] = {2,1};
MPI_type_create_subarray(NDIMS, array_of_sizes, array_of_subsizes,
array_of_starts, MPI_ORDER_C, MPI_FLOAT, &subarray3x2);
MPI_TYPE_COMMIT(&subarray3x2);

oldtype = MPI_FLOAT
array_of_subsizes[2] = {3,2};
array_of_sizes[2] = {5,4};
arrays_of_starts[2] = {2,1};

mytype :

MPI_Type_create_subarray example

#define NDIMS 2
MPI_Datatype subarray3x2;
int array_of_sizes[NDIMS], array_of_subsizes[NDIMS], arrays_of_starts[NDIMS];

array_of_sizes[0] = 5; array_of_sizes[1] = 4;
array_of_subsizes[0] = 3; array_of_subsizes[1] = 2;
array_of_starts[0] = 2; array_of_starts[1] = 1;
order = MPI_ORDER_C;

MPI_type_create_subarray(NDIMS, array_of_sizes, array_of_subsizes, array_of_starts,
order, MPI_FLOAT, &subarray3x2);

MPI_TYPE_COMMIT(&subarray3x2);

MPI_Send(&x[0][0], 1, subarray3x2, ...);

Alignment

Be very careful about data alignment

Data alignment may change the extent and offsets of a
derived datatypes

Ex: struct with one double and two ints
If ints are aligned on 4B and double on 8B

Struct1 {int a; int b; double d;}
Extent: 16B, array of 10 struct1: 160B

Struct2 {int a; double d; int b;}
Extent: 20B, array of 10 struct2: 200B

Necessary to add the 4B displacement to build a valid datatype

Back to create_struct example

Struct Partstruct{
 char class;
 double d[6];
 char b[7];
}

Struct Partstruct particle[1000];
Int dest, tag;
MP_Comm comm;

MPI_Datatype particletype;
MPI_Datatype type[3] = {MPI_CHAR, MPI_DOUBLE, MPI_CHAR};
int blocklen[3] = {1, 6, 7};
MPI_Aint disp[3] = {0, sizeof(double), 7*sizeof(double)};

MPI_Type_create_struct(3, blocklen, disp, type, &Particletype);
MPI_Type_commit(&Particletype);
MPI_Send(particle, 1000, Particletype, dest, tag, comm);

Alignment

Note, this example assumes that a double is double-word
aligned. If double’s are single-word aligned, then disp would
be initialized as

(0, sizeof(int), sizeof(int) + 6*sizeof(double))

MPI_Get_address allows us to write more generally correct
code.

MPI_Get_address (void *location, MPI_Aint *address);
IN location (location in caller memory)

OUT address (address of location)

Size of a datatype

MPI_Type_size(MPI_Datatype datatype, int

*size)

IN datatype (datatype)

OUT size (datatype size)

Returns number of bytes actually occupied by
datatype, excluding strided areas.

“Real” size of a datatype

MPI_Type_get_extent (MPI_Datatype
datatype, MPI_Aint *lb, MPI_Aint *extent)

IN datatype (datatype you are querying)
OUT lb (lower bound of datatype)
OUT extent (extent of datatype)

Returns the lower bound and extent of datatype.

Upper bound is lower_bound + extent

USER-DEFINED OPERATORS

46

User-Defined Operations

int MPI_Op_create (

 MPI_User_function *user_fn(in),

 int commute(in),

 MPI_Op *op(out),

);

Function pointer user_fn.

This function should allow associative reduction

of an element vector (the number of elements and

data type are given as arguments).

The following prototype has to be followed:
void (*f)(void* invec, void*

inoutvec, int *len, MPI_Datatype

*datatype);

47

User-Defined Operations

Does reduction commute?

If yes, runtime may optimize

reduction performance

int MPI_Op_create (

 MPI_User_function *user_fn(in),

 int commute(in),

 MPI_Op *op(out),

);

48

User-Defined Operations

Example of user-defined operation

void user_add(int *invec, int *inoutvec, int *len,
MPI Datatype *dtype){

int i;

for (i = 0 ; i < *len ; i++)

 inoutvec[i] += invec[i];

}

Creation of this operation

MPI_Op_create((MPI_User_function *)user_add, 1,

 &op);

Free operation

MPI_Op_free(op);

HYBRID PROGRAMMING WITH
THREADS AND SHARED MEMORY

MPI and Threads

MPI describes parallelism between MPI processes, with
separate address spaces

Thread parallelism provides a shared-memory model within
a process

OpenMP and Pthreads are common models
OpenMP provides convenient features for loop-level parallelism.
Threads are created and managed by the compiler, based on user
directives.

Pthreads provide more complex and dynamic approaches. Threads
are created and managed explicitly by the user.

50

Programming for Multicore

Almost all chips are multicore these days

Today’s clusters often comprise multiple CPUs per node sharing

memory, and the nodes themselves are connected by a network

Common options for programming such clusters

All MPI

MPI between processes both within a node and across nodes

MPI internally uses shared memory to communicate within a node

MPI + OpenMP

Use OpenMP within a node and MPI across nodes

MPI + Pthreads

Use Pthreads within a node and MPI across nodes

The latter two approaches are known as “hybrid programming”
51

MPI’s Four Levels of Thread Safety

MPI defines four levels of thread safety -- these are
commitments the application makes to the MPI

MPI_THREAD_SINGLE: only one thread exists in the application

MPI_THREAD_FUNNELED: multithreaded, but only the main thread
makes MPI calls (the one that called MPI_Init_thread)

MPI_THREAD_SERIALIZED: multithreaded, but only one thread at a
time makes MPI calls

MPI_THREAD_MULTIPLE: multithreaded and any thread can make MPI
calls at any time (with some restrictions to avoid races – see next slide)

MPI defines an alternative to MPI_Init
MPI_Init_thread(requested, provided)

Application indicates what level it needs; MPI implementation returns the
level it supports

52

MPI+OpenMP

MPI_THREAD_SINGLE

There is no OpenMP multithreading in the program.

MPI_THREAD_FUNNELED

All of the MPI calls are made by the master thread. i.e. all MPI calls are

Outside OpenMP parallel regions, or

Inside OpenMP master regions, or

Guarded by call to MPI_Is_thread_main MPI call.

 (same thread that called MPI_Init_thread)

MPI_THREAD_SERIALIZED
#pragma omp parallel

…

#pragma omp critical

{

 …MPI calls allowed here…

}

MPI_THREAD_MULTIPLE

Any thread may make an MPI call at any time
53

MPI_THREAD_MULTIPLE

When multiple threads make MPI calls concurrently, the outcome

will be as if the calls executed sequentially in some (any) order

Blocking MPI calls will block only the calling thread and will not

prevent other threads from running or executing MPI functions

It is the user's responsibility to prevent races when threads in the

same application post conflicting MPI calls

e.g., accessing an info object from one thread and freeing it from another

thread

User must ensure that collective operations on the same

communicator are correctly ordered among threads

e.g., cannot call a broadcast on one thread and a reduce on another

thread on the same communicator 54

Threads and MPI

An implementation is not required to support levels higher

than MPI_THREAD_SINGLE; that is, an implementation is not

required to be thread safe

A fully thread-safe implementation will support

MPI_THREAD_MULTIPLE

A program that calls MPI_Init (instead of MPI_Init_thread)

should assume that only MPI_THREAD_SINGLE is supported

A threaded MPI program that does not call MPI_Init_thread is
an incorrect program (common user error we see)

55

An Incorrect Program

Here the user must use some kind of synchronization to ensure
that either thread 1 or thread 2 gets scheduled first on both
processes

Otherwise a broadcast may get matched with a barrier on the
same communicator, which is not allowed in MPI

Process 0

MPI_Bcast(comm)

MPI_Barrier(comm)

Process 1

MPI_Bcast(comm)

MPI_Barrier(comm)

Thread 1

Thread 2

56

A Correct Example

An implementation must ensure that the above example
never deadlocks for any ordering of thread execution

That means the implementation cannot simply acquire a
thread lock and block within an MPI function. It must
release the lock to allow other threads to make progress.

Process 0

MPI_Recv(src=1)

MPI_Send(dst=1)

Process 1

MPI_Recv(src=0)

MPI_Send(dst=0)

Thread 1

Thread 2

57

The Current Situation

All MPI implementations support MPI_THREAD_SINGLE .

They probably support MPI_THREAD_FUNNELED even if they
don’t admit it.

Does require thread-safe malloc

Probably OK in OpenMP programs

Many (but not all) implementations support
THREAD_MULTIPLE

Hard to implement efficiently though (lock granularity issue)

“Easy” OpenMP programs (loops parallelized with OpenMP,
communication in between loops) only need FUNNELED

So don’t need “thread-safe” MPI for many hybrid programs

But watch out for Amdahl’s Law!
58

Performance with Thread Multiple

Thread safety does not come for free

The implementation must protect certain data structures or
parts of code with mutexes or critical sections

Synchronization: bad for performances

59

